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Introduction:  Problem Statement: 

 _ Given a knapsack with maximum capacity W, and a set S consisting of n items 

 _ Each item i has some weight wi and benefit value bi (all wi , vi and W are integer values) 

 _ Problem: How to pack the knapsack to achieve maximum total value of packed items? 

 

The most common problem being solved is the 0-1 knapsack problem, which restricts the number xi of 

copies of each kind of item to zero or one. Given a set of n items numbered from 1 up to n, each with a 

weight wi and a value vi, along with a maximum weight capacity W,[1] 

    n 

maximize         ∑   vi xi 
                        i=1 

  

subject to         n 

                        ∑  wi xi <= W   
                       i=1 

 

and  xi E {0,1} 

 

Here xi represents the number of instances of item i to include in the knapsack. Informally, the problem 

is to maximize the sum of the values of the items in the knapsack so that the sum of the weights is less 

than or equal to the knapsack's capacity. 

 

The fractional knapsack problem removes the restriction to carry the object entirely.  In this version of 

problem, the items can be broken into smaller piece, so the thief may decide to carry only a fraction xi of 

object i, where 0 ≤ xi ≤ 1. 
  

      n 

maximize                          ∑ vi xi 
                                       i=1 

Abstract: Knapsack problem comes under combinatorial optimization problem. It says if we have 

a set of items, containing a weight and a value, then we need to include in a collection of all items 

and find total count of all instances so that the total weight is less than or equal to a given limit and 

the total value is as large as possible. As this problem is NP – hard we need to find exact solution 

techniques so that we have reasonable solution times for nearly all instances encountered in 

practice, despite of having exponential time bounds for a number of highly contrived problem 

instances. In this paper we proposed a solution by modeling the solution space as a tree and then 

traversing the tree exploring the most promising subtrees first. Here we try to develop an algorithm 

where worst case complexity is bounded by some appropriate measure of the “hardness” of a 
problem. 
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subject to                        n 

                                        ∑  wi xi <= W   
                                      i=1 

Dynamic programming and Greedy Algorithms give existing solution to the respective versions of the 

problem. In this Paper, we focus on 0-1 Knapsack Problem. 

 

Existing Solution Using Dynamic Programming: Existing method includes Dynamic programming 

that is a method for solving optimization problems. The idea: Compute the solutions to the sub-

problems once and store the solutions in a table, so that they can be reused (repeatedly) later. Remark: 

We trade space for time. The Idea of Developing a DP Algorithm involves Step1: Structure: 

Characterize the structure of an optimal solution. – Decompose the problem into smaller problems, and 

find a relation between the structure of the optimal solution of the original problem and the solutions of 

the smaller problems.Step2: Principle of Optimality: Recursively define the value of an optimal 

solution. – Express the solution of the original problem in terms of optimal solutions for smaller 

problems. Step 3: Bottom-up computation: Compute the value of an optimal solution in a bottom-up 

fashion by using a table structure. Step 4: Construction of optimal solution: Construct an optimal 

solution from computed information.  

Steps 3 and 4 may often be combined [2]. 

 

Figure 1.  Formula used in DP approach 

 

Figure 2.  Knapsack Algorithm 

Example:  DP Algorithm for 0/1 Knapsack Problem 

n = 4 (# of elements) [3] 

W = 5 (max weight) 

 Elements (weight, benefit): (2,3), (3,4), (4,5), (5,6) 
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Figure 3.  Example Solved with DP Solution (Iteration 1) 

 

 

Figure 4.  Example Solved with DP Solution 

 

Figure 5.  Step to find the Solution vector. 

The solution is (1, 1, 0, and 0). 

Proposed Approach Using Branch And Bound: The method we are proposing to solve the problem is 

Branch and Bound Method. The term branch and bound refers to all state space search methods in which 

all the children of E-node are generated before any other live node can become the E-node. E-node is 

the node, which is being expended. State space tree can be expended in any method i.e. BFS or DFS. 

Both start with the root node and generate other nodes. A node which has been generated and all of 
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whose children are not yet been expanded is called live-node. A node is called dead node, which has 

been generated, but it cannot be expanded further [4]. 

 

Figure 6.  Live Node: 2, 3, 4, and 5 

 

 

Figure 7.  FIFO Branch & Bound (BFS) Children of E-node are inserted in a queue. 

 

Figure 8.  LIFO Branch & Bound (D-Search) Children of E-node are inserted in a stack.  

General Method 

Step-I. If this information is available, we can compare a node‘s bound value with the value of the best 
solution seen so far:  

Step-II.If the bound value is not better than the best solution seen so far—i.e., not smaller for a 

minimization problem and not larger for a maximization problem—the node is non-promising and can 

be terminated (some people say the branch is pruned) because no solution obtained from it can yield a 

better solution than the one already available [6] [7] [8] [9].  

Solution to the Problem  

Step.1. To apply Branch & Bound to 0/1 Knapsack Problem, it is first up necessary to conceive state 

space tree. For this, we use Fixed-sized-tuple formulation. In this the element x i of the solution vector is 

either one or zero depending upon whether the weight included or not [10], 

The children of any node can be easily generated as, for any node at level I the left child corresponds to 

x i =1 and the right to x i =0. 

 

 

x i  = 0                                      x i  = 1 

 

Figure 9.  Fixed tuple formulation 
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Step.2. We cannot apply B & B directly because this problem is maximization problem, whereas B&B 

is suitable for minimization problem. So, this is overcome by replacing the objective function 

                       n                   n 

 maximize     ∑ pi xi to                    minimize   - ∑ pi xi 
                    i=1                              i=1 

 subject to     

         n 

       ∑  wi xi <= m ,  x i = 0 or 1  ,  1<= i <= n                    

     i=1  

where  pi, wi are profit and weight of item xi   and, m is capacity of knapsack 

Step.3. Every leaf node in the state space tree representing an assignment for which    ∑  1<=i<=n   wi xi 

<= m   is an answer node. 

All other leaf nodes are infeasible. For a minimum-cost answer node to correspond to any optimal 

solution, we need to define c(x) =   -∑  1<=i<=n   pi xi   for every answer node x.   

we need two functions  ĉ(x) and u(x) such that  

 ĉ(x) <= c(x) <= u(x). 

Algorithms for defining functions 

 

Figure 10.  Algorithm to compute upper bound value 

 

Figure 11.  Algorithm to compute bound value 
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LCBB Solution To The Problem Instance: The Consider an instance of 0/1 Knapsack Problem:   

number of items    : n = 4  

profit vector          :  ( p1 , p2, p3, p4 ) =  ( 10, 10, 12, 18) 

weight vector        :  (w1, w2, w3, w4) = ( 2, ,4, 6, 9 ) 

and, knapsack capacity: m =15 

 

  

Figura 12. Solution space for instance 

Hence, the solution to the instance is  ( 1, 1, 0, 1 ) and, profit is 38 with weight 15.FO 

Conclusion:  

To solve 0/1 Knapsack Problem using B&B technique, we need to specify (1) State space mechanism, 

(2) Cost functions, 3) how to generate children of a node and (4) how to recognise a solution node.  

And, the definition to calculate bound values to prune the non-promising nodes is the key of this 

method. This technique gives better results with exponential complexity. In this paper, we have 

proposed an implementation of the branch and bound method. Computational results show that our 

approach is efficient since we have obtained stable speedups around 20 for difficult knapsack problems. 
Our approach permits also one to solve problems with size 500. 
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