
INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug - 2016

A Novel Algorithm for Load Balancing In P2P System Page 198

A Novel Algorithm for Load Balancing In P2P System

I. INTRODUCTION:
Today a growing number of companies have to process huge

amounts of data in a cost-efficient manner. Classic
representatives for these companies are operators of Internet
search engines, like Google, Yahoo, or Microsoft.
The vast amount of data they have to deal with every day has
made traditional database solutions prohibitively expensive.
Instead, these companies have popularized an architectural
paradigm based on a large number of commodity servers.
Problems like processing crawled documents or regenerating a
web index are split into several independent subtasks,
distributed among the available nodes, and computed in
parallel. In order to simplify the development of distributed
applications on top of such architectures, many of these
companies have also built customized data processing
frameworks. Examples are Google’s Map Reduce, Microsoft’s
Dryad, or Yahoo!’s Map-Reduce-Merge. They can be
classified by terms like high throughput computing (HTC) or
many-task computing (MTC), depending on the amount of data
and the number of tasks involved in the computation.
Although these systems differ in design, their programming
models share similar objectives, namely hiding the hassle of
parallel programming, fault tolerance, and execution
optimizations from the developer. Developers can typically
continue to write sequential programs. The processing
framework then takes care of distributing the program among
the available nodes and executes each instance of the program
on the appropriate fragment of data. Static. A dynamic
algorithm [1], [2], [3], [6],makes its decision according to the
status of the system, where the status could refer to a certain
type of information, such as the number of jobs waiting in the
queue, the current job arrival rate, the job processing rate, etc.,
at each processor. On the other hand, a static algorithm [8],
[11], [12], [13], performs by a predetermined policy, without
considering the status of the system. Dynamic load balancing
algorithms offer the possibility of improving load distribution
at the expense of additional communication and computation
overheads. In [4], [20], it was pointed out that the overheads of

dynamic load balancing may be large, especially for a large
heterogeneous distributed system. Hence, most of the research
works in the literature focused on centralized dynamic load
balancing [20], in which a Management Station (M-
Station)/Scheduler kept checking the system status and
scheduled the arriving jobs among the processors by some
strategies, such as Backfilling, Gang-Scheduling, Migration
[20], etc. By centralization, the M-Station/Scheduler can
handle most of the communication and computation overheads
efficiently and improve the system performance. However,
centralization limits the scalability of the parallel system and
the M-Station/Scheduler has turned out to be the system
bottleneck due to the trend that distributed computer systems
are becoming larger and more complicated. Compared with the
centralized strategies, distributed dynamic load balancing
offers more advantages, such as scalability, flexibility, and
reliability, and thus has received more and more attention
recently [1]. To realize a distributed working style, each
processor in the system will handle its own communication and
computation overheads independently [11]. In order to
minimize the communication overheads, in [1], [10], some
methods were proposed to estimate the status information of
the nodes in the system and, in [9], [14], the authors analyzed
how randomization could be used in the load balancing
problem. To obtain optimal solutions among the systems, the
computation overheads still remained high. For example, in
[11], the Li-Kameda algorithm needed more than 400 seconds
(approximately) and even a well-known FD algorithm [7]
needed more than 105 seconds to solve a generic case. Such
high computation overheads make it impossible for the
distributed systems to obtain optimal solutions dynamically
proposed an algorithm named LBVR and proved that the
convergence rate of LBVR was super-linear. A high
convergence rate can reduce the computation overheads
significantly. For instance, in most cases, the LBVR algorithm
can obtain an optimal solution of distributed systems within 0.1
seconds. In this paper, according to the job assignment
methods, we classify the distributed dynamic load balancing

Najim Sheikh
1
, Dr. Sachin Choudhari

2

 Mtech RGPV

1
, Principal, SBITM Betul

2

sheikhnajim4@gmail.com, choudhari.sachin1986@gmail.com

Abstract: In this paper, we propose two efficient algorithms referred to as Rate-based Load Balancing via Virtual Routing

(RLBVR) and Queue-based Load Balancing via Virtual Routing (QLBVR), which belong to the above RAP and QRAP

policies. We classify the dynamic distributed load balancing algorithms for heterogeneous distributed computer systems into

three policies: Queue Adjustment Policy (QAP), Rate Adjustment Policy (RAP), and Queue and Rate Adjustment Policy

(QRAP). We also consider algorithms Estimated Load Information Scheduling Algorithm (ELISA) and Perfect Information

Algorithm, which were introduced in the literature, to implement QAP policy. Our focus is to analyze and understand the

behaviors of these algorithms in terms of their load balancing abilities under varying load conditions (light, moderate, or high)

and the minimization of the mean response time of jobs. We compare the above classes of algorithms by a number of rigorous

simulation experiments to elicit their behaviors under some influencing parameters, such as load on the system and status

exchange intervals. We also extend our experimental verification to large scale cluster systems such as a Mesh architecture

which is widely used in real-life situations. From these experiments, recommendations are drawn to prescribe the suitability of

the algorithms under various situations.

Key Words: Algorithm, Balancing, Load,

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug -
2016

A Novel Algorithm for Load Balancing In P2P System Page 199

As our focus is to analyze and understand the behaviors of the

algorithms in terms of their load balancing ability,

minimization of mean response time, in our rigorous

simulation experiments gain intuition we consider a single

class of jobs for processing One of our added considerations

regarding the relative metrics of the different approaches under

consideration.

II. PROBLEM DEFINATION:

The goal of a cloud-based architecture is to provide some

form of elasticity, the ability to expand and contract capacity

on-demand. The implication is that at some point additional

instances of an application will be needed in order for the

architecture to scale and meet demand. That means there needs

to be some mechanism in place to balance requests between

two or more instances of that application. The mechanism most

likely to be successful in performing such a task is a load

balancer. A load balancer provides the means by which

instances of applications can be provisioned and de-

provisioned automatically without requiring changes to the

network or its configuration. It automatically handles the

increases and decreases in capacity and adapts its distribution

decisions based on the capacity available at the time a request

is made.

 Because the end-user is always directed to a virtual server,

or IP address, on the load balancer the increase or decrease of

capacity provided by the provisioning and de-provisioning of

application instances is non-disruptive. As is required by even

the most basic of cloud computing definitions, the end user is

abstracted by the load balancer from the actual implementation

and needs not care about the actual implementation. The load

balancer makes one, two, or two-hundred resources - whether

physical or virtual - appear to be one resource; this decouples

the user from the physical implementation of the application

and allows the internal implementation to grow, to shrink, and

to change without any obvious effect on the user. The right

load balancer at the beginning of such an initiative is

imperative to the success of more complex implementations

later. The right load balancer will be able to provide the basics

required to lay the foundation for more advanced cloud

computing architectures in the future, while supporting even

the most basic architectures today. The right load balancer will

be extensible.

 Figure 1.1: A Typical Load Balancer used in Cloud Computing

Load balancing ensures that all the processor in the system or

every node in the network does approximately the equal

amount of work at any instant of time. This technique can be

sender initiated, receiver initiated or symmetric type

(combination of sender initiated and receiver initiated types).

Our objective is to develop an effective load balancing

algorithm maximize or minimize different performance

parameters (throughput, latency for example) for the clouds of

different sizes (virtual topology depending on the application

requirement). The system will take the service as input which

is requested by the cloud customer and then the role of load

balancer begins. It will communicate with the clients present in

its network and assign the load to the least loaded one.

III. METHODOLOGY:

Figure: 1.2 the Data Flow Diagram of the System.

 First present a general system model in the design of the

algorithms. For convenience, we use “node” and “processor”
interchangeably in the rest of this paper. We consider a generic

parallel/distributed system shown in Fig. The system consists

of n heterogeneous nodes, which represent host computers

having different processing capabilities, interconnected by an

underlying arbitrary communication network. Here, we use N

to denote the set of nodes, i.e., n = [N], and E to denote a set

whose elements are unordered pairs of distinct elements of N.

Each unordered pair e = (i, j) in E is called an edge. For each

edge (i, j), we define two ordered pairs, (i, j) and (j, i), which

are called links, and we denote L as the set of links. A node i is

said to be a neighboring node of j if i is directly connected to j

by an edge. For a node j, let denote a set of neighboring nodes

of node j. We assume that jobs arrive at node i (i N) according

to an erotic process, such as inhomogeneous Poisson process

with intensity function [15].

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug -
2016

A Novel Algorithm for Load Balancing In P2P System Page 200

IV.THE SYSTEM MODEL AND CLASSIFICATION OF

DYNAMIC LOAD BALANCING ALGORITHMS:

We first present a general system model in the design of the

algorithms. For convenience, we use “node” and “processor”
interchangeably in the rest of this paper. We consider a generic

parallel/distributed system shown in Fig. 1. The system

consists of n heterogeneous nodes, which represent host

computers having different processing capabilities,

interconnected by an underlying arbitrary communication

network. Here, we use N to denote the set of nodes, i.e., n

=[N], and E to denote a set whose elements are unordered pairs

of distinct elements of N. Each unordered pair e =(i , j) in E is

called an edge. For each edge (i , j), we define two ordered

pairs, (i , j)and (j , i), which are called links, and we denote L

as the set of links. A node i is said to be a neighboring node of j

if i is directly connected to j by an edge. For a node j, let

denote a set of neighboring nodes of node j. We assume that

jobs arrive at node i (i N) according to an erotic process, such

as inhomogeneous Poisson process with intensity function [15].

A job arriving at node i may either be processed locally or

transferred through the network to another node j (j N) NÞ for

remote processing. The service time of a job is a random

variable that follows an exponential distribution with mean

1/μi, where μi denotes the average job service rate of node i
and represents the rate (in jobs served per unit time) at which

node i operates when busy. The queue discipline of the jobs in

each node is FCFS and the buffer size is infinite. We denote

βi(t) as the rate at which the jobs are processed at node i at time

t. Once a job starts to undergo processing in a node, it is

allowed to complete processing without interruption and

cannot be transferred to another node in the meanwhile. In this

model, we assume that there is a communication delay incurred

when a job is transferred from one node to another before the

job can be processed in the system and denote xij(t) as the job

flow rate from node i to node j (j Vi) at time t. Further, we

assume that each link (i , j) can transfer the load at its own

transmission capability (otherwise referred to as transmission

rate, commonly expressed as bytes/sec). We denote C as the set

of transmission capacities of all the links and cij as the

transmission capacity of a link (i , j) cij C . There are many

communication delay models proposed for data networks in the

literature. In our model, we assume that the communication

delay functions can be any increasing, convex, and differential

functions [11], and, for ease. Of simplicity, here we choose

M/M/1 as the communication delay model [11],[16].

Fig.2. (a) Node model of queue adjustment policy. We first

present a general system model in the design of the algorithms.

For convenience, we use “node” and “processor”
interchangeably in the rest of this paper. We consider a generic

parallel/distributed system shown in Fig. 1. The system

consists of n heterogeneous nodes, which represent host

computers having different processing capabilities,

interconnected by an underlying arbitrary communication

network. Here, we use N to denote the set of nodes, i.e., n =

[N], and E to denote a set whose elements are unordered pairs

of distinct elements of N. Each unordered pair e = (i , j) in

Fig (b). Node model of rate adjustment policy.

For load balancing algorithms, the model for a node is

comprised of a scheduler, an infinite buffer to hold the jobs,

and a processor. The scheduler is to schedule the jobs arriving

at the node such that the mean response time of the jobs is a

minimum. In the absence of a scheduler in a node, the job flow

takes the following sequence of actions: A job enters the

buffer, waits in the queue for processing, leaves the queue and

gets processed in the processor, and then leaves the node

(system). However, when a scheduler is present, depending on

where a scheduler resides in a node to exercise its control on

the job flow, we classify the distributed dynamic load

balancing algorithms into three policies:

1. Queue Adjustment Policy (QAP): As shown in Fig. 2a, the

scheduler is placed immediately after the queue. Algorithms of

this policy [1], [5], [6] attempt to balance the jobs in the queues

of the nodes. When a job arrives at node i, if the queue is

empty, the job will be sent to the processor directly; otherwise,

the job will have to wait in the queue. The scheduler of node i

periodically detect the queue lengths of other nodes with which

node i is concerned. When an imbalance exists, the scheduler

will decide how many jobs in the queue should be transferred

and where each of the jobs should be sent to. By queue

adjustment, the algorithms could balance the load in the

system.

2. Rate Adjustment Policy (RAP): As shown in Fig. 2b, the

scheduler is immediately placed before the queue. When a job

arrives at node i, the scheduler decides where the job should be

sent and whether it is to be sent to the queue of node i or to

other nodes under consideration. Once the job has entered the

queue, it will be processed by the processor and will not be

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug -
2016

A Novel Algorithm for Load Balancing In P2P System Page 201

transferred to other nodes. Using this policy, the static

algorithms [9], [11] can attempt to control the job processing

rate on each node in the system and eventually obtain an

optimal (or near optimal) solution for load balancing. Because

of the high computation overheads, until now no dynamic

algorithm in the literature used this policy. In this paper, we

will propose a dynamic algorithm which belongs to this policy.

 3. Combination of Queue and Rate Adjustment Policy

(QRAP): As shown in Fig. 2c, the scheduler is allowed to

adjust the incoming job rate and also allowed to adjust the

queue size of node i in some situations. Because we consider a

dynamic situation, especially when we use RAP, in some cases,

the queue size may exceed a predefined threshold and load.

V.STUDY OF ALGORITHMS:

In this section, we will introduce the algorithm named ELISA

[1], which will be used as a benchmark algorithm and qualifies

under the QAP category, and we will propose two algorithms

based on LBVR [17], referred to as Rate-based Load Balancing

via Virtual Routing (RLBVR), based on RAP, and Queue-

based Load Balancing via Virtual Routing (QLBVR), based on

QRAP, respectively.
1. ELISA: Estimated Load Information Scheduling Algorithm:
We describe ELISA [1] in brief. In ELISA, the load scheduling

decision is taken as follows: From the estimated queue lengths

of the nodes in its neighboring nodes and the accurate

knowledge of its own queue length, each node computes the

average load on itself and its neighboring nodes. Nodes in the

neighboring set whose estimated queue length is less than the

estimated average queue length by more than a threshold θ
form an active set The node under consideration transfers jobs

to the nodes in the active set until its queue length is not greater

than θ. and more than the estimated average queue length. The
value of θ, which is predefined, is a sensitive parameter and it
is of importance to the performance of ELISA. Here, the

threshold θ is fixed in such a way that the average response
time of the system is a minimum. Balance may result. Once

this happens, QAP starts3.2 The Proposed Algorithm: RLBVR

2. The Algorithm: RLBVR

Although LBVR is a static load balancing algorithm, due to its

super-linear convergence rate [17], LBVR can be tuned to

handle dynamic situations. Thus, we attempt to design a

dynamic load balancing algorithm RLBVR based on the

working style of LBVR. The main structure of this algorithm

is: First, we add a virtual node, which is referred to as the

destination node (node d), into the network system. Connect

node d with each node i (i N) by a virtual direct link (i ; d).

Let the nodal delay of node i be treated as the communication

delay on link (i ; d). After these modifications, the process of

load balancing can be described in an alternative way. And

more than the estimated average queue length. The value of θ,
which is predefined, is a sensitive parameter and it is of

importance to the performance of ELISA. Here, the threshold θ
is fixed in such a way that the average response time of the

system.

Three-node system has been transformed into a datagram

network in which node i basically acts as a router. Referring to

this figure, we observe that, for each node i, i = 1, 2 , 3, it can

consider two paths to reach node d via its neighboring nodes

and one path to reach node d directly. For example, from node

1 to node d, the paths. the way in which the loads are shared by

the nodes can be described as follows:

3. PROCEDUR FOR NODE

 Decision to use virtual servers as a fundamental unit of load

balancing, and describe our earlier load balancing schemes on

which the algorithm of this paper is based.

However, since items are queried by their IDs, changing the

ID of an object would make it difficult to locate that object

subsequently. Furthermore, some applications compute the ID

of an object by hashing its content [7], thus rendering its ID

static.
Just as the underlying DHT would do. In the case of Chord

[7], each virtual server v of a node that leaves the system

would be taken over by a node that is responsible for a virtual

server v_ which immediately succeeds v in the identifier space.

Similarly, when a node joins, it picks m random points in the

ID space and splits the virtual servers there, thereby acquiring

m virtual servers.
We assume that there are external methods to make sure that

In particular, we assume that there is replication of data objects

as proposed

In CFS [7], and departure of a node would result in the load

being transferred to the neighbors in the identifier space.

In a previous paper, we introduced three simple load

balancing schemes that use the concept of virtual servers for

static systems [5]. Since the algorithm presented in this paper is

a natural extension of those schemes, we briefly review them

here. The schemes differ primarily in the number and type of

nodes involved in the decision process of load balancing.
In the simplest scheme, called one-to-one, each lightly

loaded node v periodically contacts a random node w. If w is

heavily loaded, virtual servers are transferred from w to v such

that w becomes light without making v heavy.
The second scheme, called one-to-many, allows a heavy

node to consider more than one light node at a time. A heavy

node h examines the loads of a set of light nodes by contacting

a random directory node to which a random set of light nodes

have sent their load information. Some of h’s virtual servers

are then moved to one or more of the lighter nodes registered in

the directory.
Finally, in the many-to-many scheme each directory main-

taints load information for a set of both light and heavy nodes.

An algorithm run by each directory decides the reassignment of

virtual servers from heavy nodes registered in that directory to

light nodes registered in that directory. This knowledge of

nodes’ loads, which is more centralized than in the first two
schemes, can be expected to provide a better load balance.

Indeed, our results showed that the many-to-many technique

performs the best. Our new algorithm presented in the next

section combines elements of the many-to-many scheme (for

periodic load bal-acing of all nodes) and of the one-to-many

scheme (for emergency load balancing of one particularly

overloaded node).

The basic idea of our load balancing algorithm is to store

load information of the peer nodes in a number of directories

which periodically schedule reassignments of virtual servers to

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug -
2016

A Novel Algorithm for Load Balancing In P2P System Page 202

achieve better balance. Thus we essentially reduce the

distributed load balancing problem to a centralized problem at

each directory.
Each directory has an ID known to all nodes and is stored at

the node responsible for that ID. Each node n initially chooses

a random directory and uses the DHT lookup protocol to report

to the directory (1) the loads _v1 , . . . , _vm of the virtual

servers for which n is responsible and (2) n’s capacity cn. Each

directory collects load and capacity information from nodes

which contact it. Every T seconds, it computes a schedule of

virtual server transfers among those nodes with the goal of

reducing their maximum utilization to a parameterized periodic

threshold kp. After completing a set of transfers scheduled by a

directory, a node chooses a new random directory and the

process repeats.
Than the estimated average queue length. The value of θ,
which is predefined, is a sensitive parameter and it is of

importance to the performance of ELISA. Here, the threshold θ
is fixed in such a way that the average response time of the

system is a minimum.

VI.EXPERIMENTAL RESULT AND DISCUSSION:

Figure 6.1: Main Window

The output screen shows a scenario where there is no client

is connected to the server. The table on the screen shows the

system details of the client connected to it.

 Figure 6.2: Main Window

The output screen shows a scenario where there are

one client connected to the server. The table on the

screen shows the system details of the clients

connected to it.

 Figure 6.3: Main Window

The output screen shows a scenario where there is one

client and on remote client is connected to the server.

The table on the screen shows the system details of the

clients connected to it.

 Figure 6.4: Remote Client Task Placement Frame

 This frame window allows the user to choose a

task or application that he/she desires to use for exploiting

resources.

 Figure 6.5: Task Placement Frame

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug -
2016

A Novel Algorithm for Load Balancing In P2P System Page 203

The figure shows that the task is placed to the client which was

least loaded and gives client-name and total time required for

the execution along with the result

Figure 6.6: Task Placement Frame

The figure shows that the task is placed to the client who was

least loaded and gives client-name and total time required fo

the execution along with the result.

 Figure 6.7: The About Window

The figure shows that the task is placed to the client which was

least loaded and gives client-name and total time required fo

the execution along with the result.

VII.Conclusions and Future Work

In this paper, we first classified the distributed dynamic load

balancing algorithms into three policies:

QAP policy: queue adjustment policy, RAP policy: rate

adjustment policy, and QRAP policy: combination of queue

and rate adjustment policy. We proposed two algorithms,

referred to as Rate-based Load Balancing via Virtual Routing

(RLBVR) and Queue-based Load Balancing via Virtual

Routing (QLBVR), which belong to RAP and QRAP,

respectively. These two algorithms are based on LBVR and,

hence, the computation overheads are small [17]. We have

used Estimated Load Information Scheduling Algorithm

(ELISA) [1] to present QAP policy, the main idea of which is

to carry out estimation of load by reducing the frequency of

status exchange, thereby reducing the communication

overheads. Our policies are directly useful for performance

evaluation of cluster/grid and distributed networks. The

usefulness and applicability of our policies are demonstrated

via rigorous simulation tests on a wide variety of system

loading and other influencing parameters. We have also

demonstrated the applicability of our policies to large scale.

We construct a dynamic job arrival rate pattern and carry out

rigorous simulation experiments to compare the performances

of the three algorithms under different system loads, with

different status exchange intervals. With our rigorous

experiments, we have shown that, when the system loads are

light or moderate, algorithms of the RAP policy are preferable.

Different loading situations. Our system model and

experimental study can be directly extended to large size

networks, such as multidimensional hyper cubes networks, to

test their performances. Finally, in this paper, we have

rigorously demonstrated the performances of the algorithms for

a single class of jobs. In our near future work, we intend to

divide the jobs in the system into several classes and assign

each class of jobs its own priority. It would be interesting to

consider multiclass jobs system as well and analyze the

performances of these algorithms. From our experiments, we

have clearly identified the relative metrics of the performances

of the proposed algorithms and we are able to recommend the

use of suitable algorithms for

Different loading situations. Our system model and

experimental study can be directly extended to large size

networks, such as multidimensional hyper cubes networks.

To test their performances a dynamic job arrival rate pattern

and carry out rigorous simulation experiments to compare the

performances of the three algorithms under different system

loads, with different status exchange intervals. With our

rigorous experiments, we have shown that, when the system

loads are light or moderate, algorithms of the RAP policy are

preferable the main idea of which is to carry out estimation of

load by reducing the frequency of status exchange.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 8, Aug - 2016

A Novel Algorithm for Load Balancing In P2P System Page 204

VII. REFERENCES:

1. L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated

Load Information Scheduling Algorithm for Distributed

Computing System,” Computers and Math. with Applications,
vol. 37, pp. 57-85, 1999.

2. D. Evans and W. Butt, “Dynamic Load Balancing Using
Task- Transfer Probabilities,” Parallel Computing, vol. 19, pp.
279-301,1993.

3. C. Walshaw and M. Berzins, “Dynamic Load-Blancing for

PDE Solvers on Adaptive Unstructured Meshes,”
Concurrency: Practice and Experience, vol. 7, pp. 17-28,

1995.

4. Y. Zhang, K. Hakozaki, H. Kameda, and K. Shimizu, “A
5. Performance Comparison of Adaptive and Static Load

6. Balancing in Heterogeneous Distributed Systems,” Proc.
7. IEEE 28th Ann. Simulation Symp., pp. 332-340, Apr. 1995.

8. Y. Amir, B. Awerbuch, A. Barak, R.S. Borgstrom, and A.

Keren, “An Opportunity Cost Approach for Job Assignment
in a Scalable Comsputing Cluster,” IEEE Trans. Parallel and
Distributed Systems, vol. 11, no. 7, pp. 760-768, July 2000.

9. J. Watts and S. Taylor, “A Practical Approach to Dynamic

Load Balancing,” IEEE Trans. Parallel and Distributed
Systems, vol. 9, no. 3, pp. 235-248, Mar. 1998.

10. L. Fratta, M. Gerla, and L. Kleinrock, “The Flow Deviation
Network Design,” Networks, vol. 3, pp. 97-133, 1973.

11. D. Grosu and A.T. Chronopoulos, “A Game-Theoretic Model

and Algorithm for Load Balancing in Distributed Systems,”
Proc. 16th Int’l Parallel & Distributed Symp., Apr. 2002.

12. M. Mitzenmacher, “The Power of Two Choices in
Randomized Load Balancing,” IEEE Trans. Parallel and
Distributed Systems,vol. 12, no. 10, pp. 1094-1104, Oct.

2001.

13. M. Mitzenmacher, “How Useful Is Old Information?” IEEE
Trans.Parallel and Distributed Systems, vol. 11, no. 1, pp. 6-

20, Jan. 2000.

14. J. Li and H. Kameda, “Load Balancing Problems for
MulticlassJobs in Distributed/Parallel Computer Systems,”
IEEE Trans.Computers, vol. 47, no. 3, pp. 322-332, Mar.

1998.

15. A.N. Tantawi and D. Towsley, “Optimal Static Load
Balancing in Distributed Computer Systems,” J. ACM, vol.
32, no. 2, pp. 445-465, Apr. 1985.

16. J. Li and H. Kameda, “Optimal Static Load Balancing of
Multi- Class Jobs in a Distributed Computer System,” Proc.
10th Int’l Conf. Distributed Computing Systems, pp. 562-569,

1990.

17. A.E. Kostin, I. Aybay, and G. Oz, “A Randomized
Contention-Based Load-Balancing Protocol for a Distributed

Multi server Queuing System,” IEEE Trans. Parallel and
Distributed Systems, vol. 11, no. 12, Dec. 2000.

18. F.E. Beichelt and L.P. Fatti, Stochastic Processes and Their

Application. Taylor & Francis, 2002.

19. D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall,

1992.

20. Z. Zeng and V. Bharadwaj, “A Static Load Balancing
Algorithm via Virtual Routing,” Proc. Conf. Parallel and
Distributed Computing and Systems (PDCS ’03), Nov. 2003.

21. M. Avriel, Nonlinear Programming Analysis and Methods.

Prentice- Hall, 1997.

22. N.U. Prabhu, Foundations of Queuing Theory. Kluwer

Academic, 1997.

23. Y. Zhang, H. Kameda, and K. Shimizu, “Adaptive Bidding
Load Balancing Algorithms in Heterogeneous Distributed

Systems,” Proc. IEEE Second Int’l Workshop Modeling,
Analysis, and Simulation of Computer and Telecomm.

Systems, pp. 250-254, Jan. 1994.

