
INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 11, Nov - 2016

Design an Efficient Error Detection and Correction by using Advanced Bloom Filter Page 286

Design an Efficient Error Detection and Correction by using

Advanced Bloom Filter

1. INTRODUCTION:

Bloom filters (BFs) provide a simple and effective way to check whether an element belongs to a set.

They are used in many networking applications as well in computer architectures. The BFs are also used

in large databases (e.g., Google Big table use sit to reduce the disk lookups). The basic structure of BFs

has also been extended over the years. For example, counting BFs (CBFs) were introduced to allow

removal of elements from the BF. To optimize the transmission over the network, another extension

known as compressed Bloom filters has been presented. Recently Bloom filter (Biff) codes that are

based on BFs have been used to perform error correction in large data sets. In most case, BFs are

implemented using electronic circuits. The contents of a BF are commonly stored in a high speed

memory and required processing is done in a processor or in dedicated circuitry. The set used to

construct the BF is also commonly stored in a lower speed memory.

The reliability of electronic circuits is becoming a challenge as technology scales. Errors caused by

interferences, radiation, and other effects become more common. Therefore, mitigation techniques are

used at different levels to ensure that the circuits continue to operate Reliable. For BF implementation,

memories are a critical element. For memories, permanent errors and defects are commonly corrected

using spare rows and columns. However, soft errors caused for example by radiation can affect any

memory cell changing its value during circuit operation. Soft errors do not produce damage to the large

data memory device that continues to operate correctly but has the wrong value in the affected cell. To

deal with soft errors, the use of a per word parity bit or more advanced error correction codes (ECCs)

has been common in memories for many years. Web cache sharing Collaborating Web caches use

Bloom filters (dubbed “cache summaries”) as compact representations for the local set of cached files.

Each cache periodically broadcasts its summary to all other members of the distributed cache. Using all

summaries received, a cache node has a (partially outdated, partially wrong) global image about the set

Abstract: Here in this paper we are analyzing the Bloom Filter Error Detection and Correction

Mechanism with the counting method. A Bloom filter is a space-efficient probabilistic data

structure that is used to test whether an element is a member of a set or not. Bloom filters (BFs)

provide a fast and efficient way to check whether a given element belongs to a set. The BFs are

used in numerous applications, for example, in communications and networking. There is also

ongoing research to extend and enhance BFs and to use them in new scenarios. Reliability is

becoming a challenge for advanced electronic circuits as the number of errors due to

manufacturing variations, radiation, and reduced noise margins increase as technology scales. In

this brief, it is shown that BFs can be used to detect and correct errors in their associated data set.

This allows a synergetic reuse of existing BFs to also detect and correct errors. The majority based

error detecting and correcting codes are used to detect and correct errors in BF memories. This

allows a synergetic reuse of existing BFs to also detect and correct errors. This is illustrated

through an example of a counting BF used for IP traffic classification. The results show that the

proposed scheme can effectively correct single errors in the associated set. The proposed scheme

can be of interest in practical designs to effectively mitigate errors with a reduced overhead in

terms of circuit area and power.

Key Words: Bloom Filter (BFs), Error Correction Soft Errors, Comparator.

Gandhe Rajendra Prasad
 1

,

G.Niharika

 2

1
 PG Scholar, Department of ECE, Vaagdevi College of Engineering, Bollikunta, Warangal.

2
 Assistant Professor, Department of ECE, Vaagdevi College of Engineering, Bollikunta, Warangal.

Email - rajendraprasad0912@gmail.com, niss.shiloh@gmail.com

mailto:rajendraprasad0912@gmail.com
mailto:niss.shiloh@gmail.com

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 11, Nov - 2016

Design an Efficient Error Detection and Correction by using Advanced Bloom Filter Page 287

of files stored in the aggregated cache. The Squid Web Proxy Cache uses “Cache Digests” based on a
similar idea. Query filtering and routing The Secure wide-area Discovery Service, subsystem of Ninja

project, organizes service providers in a hierarchy. Bloom filters are used as summaries for the set of

services offered by a node. Summaries are sent upwards in the hierarchy and aggregated. A query is a

description for a specific service, also represented as a Bloom filter. Thus, when a member node of the

hierarchy generates/receives a query, it has enough information at hand to decide where to forward the

query: downward, to one of its descendants (if a solution to the query is present in the filter for the

corresponding node), or upward, toward its parent (otherwise). Compact representation of a differential

file a differential file contains a batch of database records to be updated. For performance reasons the

database is updated only periodically (i.e., midnight) or when the differential file grows above a certain

threshold. However, in order to preserve integrity, each reference/query to the database has to access the

differential file to see if a particular record is scheduled to be updated. To speed-up this process, with

little memory and computational overhead, the differential file is represented as a Bloom filter. Free text

searching basically, the set of words that appear in a text is succinctly represented using a Bloom filter.

Constructing BF’s: Consider a set A= {a1, a2, .an} of n elements. Bloom filters describe membership

information of A using a bit vector V of length m. For this, k hash functions, h ,h ,..., hk 1 2 with h : X

{1..m} i below: The following procedure builds an m bits Bloom filter,

corresponding to a set A and using k h ,h ,..., h 1 2 hash functions:

Procedure Bloom Filter(set A, hash_functions, integer m) returns filter filter = allocate m bits initialized

to 0 foreach ai in A: for each hash function hj: filter[hj(ai)] = 1 end for each end for each return filter

Therefore, if ai is member of a set A, in the resulting Bloom filter V all bits obtained corresponding to

the hashed values of ai are set to 1. Testing for membership of an element elm is equivalent to testing

that all corresponding bits of V are set:

Procedure Membership Test (elm, filter, hash_functions) returns yes/no for each hash function hj: if

filter [hj(elm)] != 1 return No end for each return Yes features: filters can be built incrementally: as new

elements are added to a set the corresponding positions are computed through the hash functions and

bits are set in the filter. Moreover, the filter expressing the reunion of two sets is simply computed as the

bit-wise OR applied over the two corresponding Bloom filters.

Soft Error: Soft error is an error occurrence in a computer's memory system that changes an instruction

in a program or a data value. Soft errors typically can be remedied by cold booting the computer. A soft

error will not damage a system's hardware; the only damage is to the data that is being processed. There

are two types of soft errors: chip-level soft error: These errors occur when the radioactive atoms in the

chip's material decay and release alpha particles into the chip. Because an alpha particle contains a

positive charge and kinetic energy, the particle can hit a memory cell and cause the cell to change state

to a different value. The atomic reaction is so tiny that it does not damage the actual structure of the

chip. Chip-level errors are rare because modern memory is so stable that it would take a typical

computer with a large memory capacity at least 10 years before the radioactive elements of the chip's

materials begin to decay. system-level soft error: These errors occur when the data being processed is hit

with a noise phenomenon, typically when the data is on a data bus .The computer tries to interpret the

noise as a data bit, which can cause errors in addressing or processing program code. The bad data bit

can even be saved in memory and cause problems at a later time. Several techniques have been

employed in order to reduce those soft errors and Multiple Bit Upsets.

2. OVERVIEW OF BLOOM FILTER:

2.1. Function of Bloom Filter in Low-Power Deep Packet Inspection

A Bloom filters architecture that exploits the well-known pipelining technique. Bloom filters are

frequently used to identify malicious content like viruses in high speed networks. However, the

architectures are used to implement Bloom filters are not power efficient. A new Bloom filter

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 11, Nov - 2016

Design an Efficient Error Detection and Correction by using Advanced Bloom Filter Page 288

architecture that exploits the well-known pipelining technique. Through power analysis we show that

pipelining can reduce the power consumption of Bloom filters which leads to the energy efficient

implementation of intrusion detection systems.

2.2. Operation of Error Detection and Correction in Content Addressable Memories

A Content Addressable Memory (CAM) is an SRAM based memory which can be accessed in parallel

in order to search for a given search word, providing as result the address of the matching data. The use

of CAM is widespread in many applications ranging from the controller of a CPU memory cache to the

implementation of lookup tables of high speed routers. Like conventional memories, CAM can be

affected by the occurrence of Single Event Upsets (SEU) which can alter its operation causing different

effects such as pseudo HIT or pseudo-MISS events. In order to avoid the effects of SEUs different

approaches have been proposed in previous literature, but all of these solutions require changes to the

internal structure of the CAM itself. Differently from previous approaches, in this paper we propose a

method that does not require any modification to a CAM's internal structure and therefore can be easily

applied at system level, using a suitable redundant CAM component in order to obtain a CAM module

with error detection and correction capabilities.

2.3. Bloom Filter Based Associative Deletion

This is not entirely suitable for many new applications, such as deleting one attribute value according to

another attribute value for a set of data objects/items with two correlated attributes. The concept for such

an operation, called the associative deletion. To realize this operation, used a new Bloom filter data

structure, named IABF (Improved Associative deletion Bloom Filter), the association information on the

two correlated attributes of items in the given data set. Based on IABF, used an algorithm to perform

associative deletions, which can be applied to both normal data and streaming data. The two-attribute

scheme in a pairwise manner or by an extended version of IABF, these two methods may not provide

the best performance. To further accelerate the operation, also illustrate a hardware coprocessor

implementation for a crucial component of the algorithm. Detailed theoretical analysis and experimental

results demonstrate that the presented IABF technique can accurately process associative deletions with

controlled false positive and negatives. The two-attribute scheme in a pair-wise manner or by an

extended version of IABF, these two methods may not provide the best performance.

2.4. Bloom filter in networking field

In Collaborating in overlay and peer-to-peer networks, Bloom filters can be uses for summarizing

content to aid collaborations in overlay and peer-to-peer networks. In Resource routing, the Bloom

filters allow probabilistic algorithms for locating resources .In Packet routing, Bloom filters provide a

means to speed up or simplify packet routing protocols. The Measurement of Bloom filter that is

provide a useful tool for measurement infrastructures used to create data summaries in routers or other

network device.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 11, Nov - 2016

Design an Efficient Error Detection and Correction by using Advanced Bloom Filter Page 289

3. PROPOSED METHOD:

3.1. Simple Procedure for the Correction of Errors in the Element Set

To present the simple correction procedure, let us assume that a single bit error affects element x and

that it is detected using the parity bit. Therefore, xe is read from the memory. The correct value x has to

be xe if the error affected the parity bit. If the error affected the ith data bit, the correct value will be

xem(i) where xem(i) is the value read (xe) with the i th bit inverted. To determine which of those is in

fact the correct value x, the candidates [xe and all the xem (i)] can be tested for membership to the CBF.

If only one of the candidates is found in the CBF, then no false positives have occurred and the value

found is the correct one. Instead, if more than one candidate is found, the procedure is unable to find the

correct value due to the occurrence of false positives. In this case, the advanced procedure described in

Section must be used. This simple and fast procedure requires only l +1 queries to the CBF, where l is

the number of bits in each element of the set. However, the correction rate that can be achieved depends

on the false positive rate of the CBF. In particular, the probability that an error can be corrected using

this procedure can be approximated as

Pcorrection ~ = (1 − p f p) ^l

3.2. Advanced Procedure for the Correction of Errors in the Element Set

A more advanced technique can be used. The correction process starts by making a copy of the CBF in

DRAM memory. Then, all the elements in the set except for the erroneous one are removed from the

CBF. This will leave a CBF with only the values that correspond to the original value of the element x.

Once that is done, the candidates [xe and all the xem(i)] can be queried over the CBF that has only x as

an entry. As in the previous procedure, if only one of the candidates matches the CBF, that is the correct

value. If more than one candidate matches the CBF then the error cannot be corrected. The probability

that a given value x and another value y produce exactly the same values of the hash functions h1, h2, . .

. , h k can be approximated as The increased correction rate comes at the cost of a more complex

correction procedure that needs the replication of the CBF, the removal of all the entries except the

erroneous one (n−1), and finally the query for the l + 1 candidates. However, as soft errors are rare

events, and the procedure is only needed when the simple procedure presented before cannot correct an

error, the scheme can be useful in real applications.

3.3. Bloom Filter Used with Comparator by Parallel Prefix

In order to improve the comparison time of bloom filter, we use parallel prefix comparator to compare

incoming data. The construction and the working of our proposed comparator explain given below: In

this section, the comparator’s design is elaborated which is based on using a novel parallel prefix tree

.Each set or group of cells produces outputs that serve as inputs to the next set in the hierarchy, with the

exception of set 1, whose outputs serve as inputs to several sets.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 11, Nov - 2016

Design an Efficient Error Detection and Correction by using Advanced Bloom Filter Page 290

Fig.4 Simulation result for Bloom Filter

Fig. 5 Synthesis report for Bloom Filter

CONCLUSION:

In this brief, a new application of BFs has been proposed. The idea is to use high-speed low-power

comparator in BFs to compare element set. In particular comparator structured as parallel prefix trees

with repeated cells in the form of simple stages that are one gate level deep with a maximum fan-in of

five and fan out of four, independent of the input bit width. Simulation results show our proposed bloom

filter has improved performance in terms of both comparison time and memory protection. The

configuration considered in this brief is that of a memory protected with a per word parity bit for which

it is demonstrated that the CBF can be used to achieve single bit error correction. This show how

existing CBFs can be used to achieve error correction in addition to perform their traditional

membership checking function. The general idea can also be used when the memory is protected with

more advanced codes. For example, if an SEC-DED code is used, the CBF could be used to correct

double errors. In addition, the simplest part of the error correction scheme can also be applied to

traditional BFs to achieve some degree of error detection and correction. The exploration of these

alternative configurations is left for future work.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 2, Issue - 11, Nov - 2016

Design an Efficient Error Detection and Correction by using Advanced Bloom Filter Page 291

REFERENCES:

1. J.Qian, Q. Zhu, and Y. Wang,: “Bloom Filter Based Associative Deletion”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 25, No. 8, pp 1986-1998, August 2014.

2. Y. Jin, Y.Wen, and W.Zhang, “Content Routing and Lookup Schemes using Global Bloom Filter for Content-
Delivery-as-a-Service”, IEEE Systems Journal, Vol. 8, No. 1, pp 268- 278, March 2014.

3. S. Pontarelli and M. Ottavi,: “Error detection and correction in content addressable memories by using bloom
filters,” IEEE Trans. Comput., vol. 62, no. 6, pp. 1111–1126, Jun. 2013.

4. F. Hao, M. Kodialam, T.V. Lakshman, and H. Song,: “Fast Dynamic Multiple-Set Membership Testing Using

Combinatorial Bloom Filters”, IEEE/ACM Transactions On Networking, Vol. 20, No. 1, pp. 295-308, February

2012.

5. Z. Zhong, and K. Li, “Speed Up Statistical Spam Filter by Approximation”, IEEE Transactions on Computers, Vol.
60, No. 1, pp. 120-134, January 2011.

6. D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of counting bloom filter,” IEEE Transactions On

Knowledge and Data Engineering, vol. 22, no. 5, pp. 651–664, May 2010.

7. D. Ficara, A. Di Pietro, S. Giordano, G. Procissi, and F. Vitucci,: “Enhancing Counting Bloom Filters Through
Huffman-Coded Multilayer Structures”, IEEE/ACM Transactions On Networking, Vol. 18, No. 6, pp. 1977-1987,

December 2010.

8. S. Elham, A. Moshovos, and A.Veneris,: “L-CBF: A low-power, fast counting Bloom filter architecture,” IEEE
Transactions On Very Large Scale Integration (VLSI) Systems, vol. 16, no. 6, pp. 628–638, Jun. 2008

9. B. Bloom,: “Space/time tradeoffs in hash coding with allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–
426, 1970.

10. Broder and M. Mitzenmacher,: “Network applications of bloom filters: A survey,” in Proc. 40th Annu. Allerton

Conf., Oct. 2002, pp. 636–646.

11. Moshovos, G. Memik, B. Falsafi, and A. Choudhary, “Jetty: Filtering snoops for reduced energy consumption in
SMP servers,” in Proc. Annu. Int. Conf. High-Perform. Comput. Archit., Feb. 2001, pp. 85–96.

12. Fay et al.,: “Bigtable: A distributed storage system for structured data,” ACM TOCS, vol. 26, no. 2, pp. 1–4, 2008.

13. F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,: “An improved construction for counting
bloom filters,” in Proc. 14

th
 Annu. ESA, 2006, pp. 1–12.

14. M. Mitzenmacher,: “Compressed bloom filters,” in Proc. 12th Annu. ACM Symp. PODC, 2001, pp. 144–150.

15. M. Mitzenmacher and G. Varghese, “Biff (Bloom Filter) codes: Fast error correction for large data sets,” in Proc.

IEEE ISIT, Jun. 2012, pp. 1–32.

16. S. Elham, A. Moshovos, and A. Veneris, “L-CBF: A low-power, fast counting Bloom filter architecture,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 6, pp. 628–638, Jun. 2008.

17. T. Kocak and I. Kaya, “Low-power bloom filter architecture for deep packet inspection,” IEEE Commun. Lett., vol.

10, no. 3, pp. 210–212, Mar. 2006.

18. S. Dharmapurikar, H. Song, J. Turner, and J. W. Lockwood, “Fast hash table lookup using extended bloom filter:
An aid to network processing,” in Proc. ACM/SIGCOMM, 2005, pp. 181–192.

19. N. Kanekawa, E. H. Ibe, T. Suga, and Y. Uematsu, Dependability in Electronic Systems: Mitigation of Hardware

Failures, Soft Errors, and Electro-Magnetic Disturbances. New York, NY, USA: Springer-Verlag, 2010.

20. Bhavsar, “An algorithm for row-column self-repair of RAMs and its implementation in the alpha 21264,” in Proc.

Int. Test Conf., 1999, pp. 311–318.

21. M. Nicolaidis,: “Design for soft error mitigation,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 405–418, Sep.

2005.

22. L. Chen and M. Y. Hsiao,: “Error-correcting codes for semiconductor memory applications: A state-of-the-art

review,” IBM J. Res. Develop., vol. 28, no. 2, pp. 124–134, 1984.

23. G. Wang, W. Gong, and R. Kastner, “On the use of bloom filters for defect maps in nanocomputing,” in Proc.

IEEE/ACM ICCAD, Nov. 2006, pp. 743–746.

24. S. Pontarelli and M. Ottavi,: “Error detection and correction in content addressable memories by using bloom
filters,” IEEE Trans. Comput., vol. 62, no. 6, pp. 1111–1126, Jun. 2013.

25. Reddy and P. Banarjee, “Algorithm-based fault detection for signal processing applications,” IEEE Trans. Comput.,

vol. 39, no. 10, pp. 1304–1308, Oct. 1990.

26. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of counting bloom filter,” IEEE Trans. Knowl. Data Eng.,

vol. 22, no. 5, pp. 651–664, May 2010.

27. P. Reviriego, J. A. Maestro, S. Baeg, S. J. Wen, and R. Wong, “Protection of memories suffering MCUs through the
selection of the optimal interleaving distance,” IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp. 2124–2128, Aug. 2010.

28. M. Saleh, J. J. Serrano, and J. H. Patel,: “Reliability of scrubbing recovery-techniques for memory systems,” IEEE

Trans. Rel., vol. 39, no. 1, pp. 114–122, Apr. 1990.

29. L. Fan, P. Cao, J. Almeida, and A. Z. Broder,: “Summary cache: A scalable wide-area Web cache sharing protocol,”
in Proc. ACM SIGCOMM, Sep. 1998, pp. 254–265.

30. CAIDA Anonymized Internet Traces [Online]. Available:

http://www.caida.org/data/passive/passive_2012_dataset.xml

