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1. INTRODUCTION: 
 

The primary goal of software engineering is to produce high quality software. Software quality can be reached using 

two important concepts: Software Process Quality and Software Product Quality [19]. A software process is a set of 

activities, practices, methods, and transformations used to develop and to maintain software and the associated 

products (e.g., project plans, design documents, code, test cases, and user manuals) [19]. The adopted development 

process reflects in productivity, cost, and in the software quality. Software product quality has been given less 

importance when compared to other areas of software quality, with exception for testing. For a long time, reliability 

(as measured in a number of failures) has been the single criteria for gauging software product quality. Software 

products are getting larger in size and in number of components, where different components exchange information 

using several interfaces to other components. This means that the overall complexity of the systems grows. It is 

estimated that 50-80% of the costs of the software project goes to maintenance [11]. This is the reason why it is 

important for a software company to understand the quality of their products in order to increase efficiency of the 

software development. One of the challenges of software quality research is to identify how to use metrics to drive the 

development processes and to improve the software product. Source code metrics can be used to identify possible 

problems.  or chances for improvements in software quality [19]. A variety of metrics to measure source code proper- 

ties like size, complexity, cohesion, and coupling have been proposed [1, 6, 12, 14]. However, source code metrics are 

rarely used to support decision making because they are ultimately just numbers that are not easy to interpret [19]. 

Usually, metrics are classified into three categories: process, project, and product, as described next [11].  

 Process metrics: enable the organization to evaluate the development process. They can be used to improve 

software development and maintenance practices. As examples of process metrics, we can mention function point, 

change metrics, number of files involved in bug fixing, etc.  

 Project or resources metrics:  enable the organization to evaluate the progress of a software project. Basically, they 

describe the project characteristics and execution. As examples of project or resources metrics, we can mention a 

number of developers, cost, schedule, and productivity. 

 Product metrics: enable software engineers to evaluate internal properties of a software product. As examples of 

product metrics, we can mention size, complexity, coupling, and cohesion. 

 

Chidamber and Kemerer have proposed one of the most widely referenced sets of object- oriented software metrics [5, 

6]. Often referred to as the CK metrics suite, it includes six class-based design metrics:    

Weighted Methods per Class (WMC): represents the complexity of the class as measured by its methods. The 

calculation of the metric is given by the sum of the complexity of the methods in the class. According to Chidamber 

and Kemerer, WMC is an indicator of how much time and effort are required to develop and maintain a given class. 

Currently, some authors define WMC as the number of methods in the class.  

Depth of Inheritance Tree (DIT): indicates the depth of a class in the inheritance tree, which is given by the 

length of the path from the class to the root of the tree. DIT is nowadays considered an indicator of design complexity. 

Number of Children (NOC): denotes the number of immediate subclasses of a class. This metric is an indicator of the 

importance that a class has in the system. If a class has a large number of children, it might, for example, require more 

tests.  
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Coupling between Object Class (CBO): indicates the number of classes to which a certain class is coupled to. 

For Chidamber and Kemerer, a coupling between two classes exists when the methods implemented in one class use 

methods or instance variables defined by other classes. This metric can be used to reveal design problems. For 

example, it is widely accepted that excessive coupling is harmful to modular design, because the more independent a 

class is, easiest is to reuse it in other systems.  

Response for a Class (RFC): indicates the number of methods that can be called in response to a message 

received from a class, defined as the number of methods of the class plus the number of methods invoked by them. 

RFC is considered an indicator of coupling.  

Lack of Cohesion in Methods (LCOM): indicates the lack of cohesion between the methods in a class. 

Chidamber and Kemerer propose that cohesion between methods can be captured by the use of common instance 

variables. In this way, LCOM is usually computed as the number of method pairs that have no instance variables in 

common minus the number of method pairs with common instance variables. Therefore, the smaller the value of 

LCOM, the more cohesive is the class.  

CK metrics cover different internal properties of software systems, such as complexity (WMC), coupling (CBO and 

RFC), inheritance (DIT and NOC), and cohesion (LCOM). It is also important to state that, there are other object-

oriented metrics cited in the literature [1, 14]. Among such metrics, we can mention the number of lines of code 

(SLOC), number of methods (NOM), number of attributes (NOA), a number of other classes referenced by a class 

(FAN-OUT), etc. Software metrics have been proposed to analyze and evaluate software by quantitatively capturing a 

specific characteristic or a view of a software system.  

 

2. LITERATURE REVIEW:    
 

Different methods to derive thresholds. These methods are organized groups: (a) extracting threshold using traditional 

techniques (b) extracting threshold using error models. (c) Extracting Thresholds using Clustering Algorithms. 

(a) Extracting Thresholds using Traditional Techniques: Erni and Lewerentz proposed the use of mean (μ) and 
standard deviation (o) to derive a threshold T from project data [7]. For this, the authors used coupling, 

complexity, and cohesion metrics. A threshold T is calculated as Tlow = μ+o or Thigh = μ—o, indicating that 

high or low values of a metric can cause problems, respectively. This method is a common statistical technique 

which data are normally distributed. However, the authors did not analyze the underlying distribution and only 

applied it to one system, using three releases. The problem with the use of these methods is that they assume 

that metric data are assumed to be normally distributed, thus compromising their validity in general. Software 

metrics generally follow heavy-tailed distributions. Consequently, the use of means and the standard deviation is 

not adequate. 

(b) extracting threshold using error models:  Shatnawi et al. investigated the use of the ROC curves to extract 

thresholds for predicting the existence of bugs in different error categories [21]. They performed an experiment 

using 12 source code metrics and applied the method to three releases of Eclipse. The metrics analyzed were: 

number of attributes (NOA), number of operations (NOO), lack of cohesion of methods (LCOM), weighted 

methods complexity (WMC), coupling between objects (CBO), coupling through data abstraction (CTA), 

coupling through message passing (CTM), response for class (RFC), depth of inheritance hierarchy (DIT), 

number of child classes (NOC), number of added methods (NOAM), and number of overridden methods 

(NOOM). Catal et al. [4] developed a noise detection approach that uses threshold values for software metrics in 

order to capture these noisy instances. The thresholds of Catal et al. were calculated using an adaptation of the 

Shatnawi et al. [21] threshold calculation technique. They validated the proposed noise detection technique on 

five public NASA datasets. The results showed that this method is effective for detecting noisy instances. 

Although Shatnawi et al. and Catal et al. extracted thresholds using ROC curves, this method resulted in three 

drawbacks in their results. First, threshold values can not be found. Second, for different releases of a system, 

different thresholds were derived. Third, the methodology does not succeed in deriving monotonic thresholds, 

i.e., lower thresholds were derived for higher error categories than for lower ones. Benlarbi et al. analyzed the 

relation of source code metric thresholds and software failures using linear regressions. This study was 

performed using five CK metrics (WMC, DIT, NOC, CBO, and RFC) and two C++ systems. The authors 

compared two error probability models, one with a threshold and another without. For the model with a 

threshold, zero probability of error exists for metric values below the threshold. They concluded that there was 

no empirical indication supporting the model with a threshold as there was no significant difference among the 

models. However, this result is only valid for this specific error prediction model and for the metrics the authors 

took into account. Other models can, potentially, give different results. Duplicated code, overly complex 

methods, non-cohesive classes, and long parameter lists are possible signs of degradation in the design of 

software system [15]. These signs are usually known as design flaws, bad smells [10]. 

(c) Extracting Thresholds using Clustering Algorithms: Yoon et al. investigated the use of the K-means 

clustering algorithm to identify outliers in the data measurements [17]. Outliers can be identified by 
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observations that appear either in isolated clusters (external outliers) or by observations that appear far away 

from other observations within the same cluster (internal outliers). Oliveira et al. proposed a quantitative 

approach based on source code metrics to determine similarity in object-oriented systems [13, 16]. This 

approach also used K-means clustering algorithm to derive thresholds. The thresholds generated by this 

approach represents profiles of classes of a system. The authors performed two case studies using a dataset with 

more than 100 Java systems and 23 metrics. However, K-means suffers from important shortcomings: it requires 

an input parameter that affects both the performance and the accuracy of the results. Thus, different thresholds 

can be extracted from the same dataset and metric.  

 

3. DISCUSSION: 
 

In this paper, I provided a discussion about threshold extraction methods, which are summarized in Table 1 and 2. I 

can observed that there are several methods for this purpose. However, there is not a method that is widely recognized 

by researchers and software engineers as an effective instrument to control the internal quality of software systems. I 

also observed that using benchmark of systems is an interesting approach, which tends to reflect the software 

development practice. 

 

Table 1: Thresholds approaches 

 

Authors Systems Languages Metrics 

Erni and Lewer- entz [7] 1 Smaltalk Complexity, coupling, and cohesion 

Lanza and Marinesu [14] 82 C++ and Java Inheritance, coupling, size,  and complexity 

Alves et al. [2] 100 C# and Java 

McCabe  complexity, unit size,  unit 

interfacing, module interface , size and FAN-

IN 

Ferreira et al. [9] 40 Java 
LCOM, DIT, COF, Afferent coupling, 

NOMP, and NOAP 

Shatnawi et al. [21] 1 Java 
CBO, RFC, WMC, LCOM, DIT, NOC, CTA, 

CTM,  NOAM, NOOM, NOA, and NOO 

Catal et al. [4] 5 C  and C++ SLOC, MCave, EC, DC 

Benlarbi et al. [3] 2 C++ WMC,   DIT,   NOC,   CBO, and RFC 

Herbold et al. [8] 8 
C, C++, C#, 

and Java 
Size,  coupling,  complexity, and inheritance 

Oliveira et al. [16] 86 Java Size metrics 

Oliveira et al. [13] 103 Java Size,  coupling,  complexity, and cohesion 

 

 

Table 2: Thresholds approaches 

 

Authors Method Weaknesses 

Erni and Lewerentz [7] 

Lanza and Marinescu [14] 

mean and 

standard 

deviation 

It requires an input parameter that affects both the performance and 

the accuracy of the results 

Alves et al. [2] 
quantile function 

analysis 
The goal is to create quality profiles to rank entities 

Ferreira et al. [9] 

statistical 

distribution 

analysis 

do not establish the percentage of classes tolerated in each 

category 

Shatnawi et al. [21] 

Catal et al. [4] 

ROC curves 

 

 

This  methodology  does not succeed in deriving 

monotonic thresholds and thresholds values can be not 

found 

Benlarbi et al. [3] linear regression There is no empirical   evidence supporting the model 

Herbold et al. [8] machine learning The methodology produces only a binary classification 

Oliveira et al. [16] 

 Oliveira et al. [13] 

K-means 

algorithm 

It requires an input parame- 

ter that affects both the  per formance and the accuracy of 

the results.  
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4. CONCLUSION: 
 

Source code metrics can be used to find possible problems or chances for improvements in software quality. A variety 

of metrics to measure source code properties like size, complexity, cohesion, and coupling have been proposed [1, 14]. 

How- ever, source code metrics are rarely used to support decision making because they are not easy to interpret [85, 

95]. To promote the use of metrics as an effective measure- ment instrument, it is essential to establish credible 

thresholds [2, 21, 8]. 
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