
INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 3, Issue - 6, June - 2017

Available online on – WWW.IJIRMF.COM Page 67

DIFFERENT TECHNIQUE OF EXTRACTING THRESHOLD VALUE

FOR SOURCE CODE METRICS

Shaitan Singh Meena
1
, Dr. Satwinder Singh

2
,

Centre for computer science and technology, Central university of Punjab, Bathinda, India

Email - shaitansinghmeena@gmail.com
1
, satwindercse@gmail.com

2

1. INTRODUCTION:

The primary goal of software engineering is to produce high quality software. Software quality can be reached using

two important concepts: Software Process Quality and Software Product Quality [19]. A software process is a set of

activities, practices, methods, and transformations used to develop and to maintain software and the associated

products (e.g., project plans, design documents, code, test cases, and user manuals) [19]. The adopted development

process reflects in productivity, cost, and in the software quality. Software product quality has been given less

importance when compared to other areas of software quality, with exception for testing. For a long time, reliability

(as measured in a number of failures) has been the single criteria for gauging software product quality. Software

products are getting larger in size and in number of components, where different components exchange information

using several interfaces to other components. This means that the overall complexity of the systems grows. It is

estimated that 50-80% of the costs of the software project goes to maintenance [11]. This is the reason why it is

important for a software company to understand the quality of their products in order to increase efficiency of the

software development. One of the challenges of software quality research is to identify how to use metrics to drive the

development processes and to improve the software product. Source code metrics can be used to identify possible

problems. or chances for improvements in software quality [19]. A variety of metrics to measure source code proper-

ties like size, complexity, cohesion, and coupling have been proposed [1, 6, 12, 14]. However, source code metrics are

rarely used to support decision making because they are ultimately just numbers that are not easy to interpret [19].

Usually, metrics are classified into three categories: process, project, and product, as described next [11].

 Process metrics: enable the organization to evaluate the development process. They can be used to improve

software development and maintenance practices. As examples of process metrics, we can mention function point,

change metrics, number of files involved in bug fixing, etc.

 Project or resources metrics: enable the organization to evaluate the progress of a software project. Basically, they

describe the project characteristics and execution. As examples of project or resources metrics, we can mention a

number of developers, cost, schedule, and productivity.

 Product metrics: enable software engineers to evaluate internal properties of a software product. As examples of

product metrics, we can mention size, complexity, coupling, and cohesion.

Chidamber and Kemerer have proposed one of the most widely referenced sets of object- oriented software metrics [5,

6]. Often referred to as the CK metrics suite, it includes six class-based design metrics:

Weighted Methods per Class (WMC): represents the complexity of the class as measured by its methods. The

calculation of the metric is given by the sum of the complexity of the methods in the class. According to Chidamber

and Kemerer, WMC is an indicator of how much time and effort are required to develop and maintain a given class.

Currently, some authors define WMC as the number of methods in the class.

Depth of Inheritance Tree (DIT): indicates the depth of a class in the inheritance tree, which is given by the

length of the path from the class to the root of the tree. DIT is nowadays considered an indicator of design complexity.

Number of Children (NOC): denotes the number of immediate subclasses of a class. This metric is an indicator of the

importance that a class has in the system. If a class has a large number of children, it might, for example, require more

tests.

Abstract: Meaningful thresholds are needed for promoting software metrics as an effective instrument to

measure the internal quality of systems. The propose the concept of different technique of desgin Thresholds for

evaluating metrics data. The disscrebde tehniqiue of proposed thresholds assume that metric thresholds should

be followed by most entities. Describe an empirical method for deriving Threshold from a corpus of systems. I

also perform an extensive analysis of Threshold technique (i) extracting threshold using traditional techniques;

(ii) extracting threshold using error models. (iii) Extracting Thresholds using Clustering Algorithms. with

thresholds extracted according to a method used by the software industry.

Key Words: Source code metrics, Thresholds, error models, clustering algoritthms.

mailto:shaitansinghmeena@gmail.com1

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 3, Issue - 6, June - 2017

Available online on – WWW.IJIRMF.COM Page 68

Coupling between Object Class (CBO): indicates the number of classes to which a certain class is coupled to.

For Chidamber and Kemerer, a coupling between two classes exists when the methods implemented in one class use

methods or instance variables defined by other classes. This metric can be used to reveal design problems. For

example, it is widely accepted that excessive coupling is harmful to modular design, because the more independent a

class is, easiest is to reuse it in other systems.

Response for a Class (RFC): indicates the number of methods that can be called in response to a message

received from a class, defined as the number of methods of the class plus the number of methods invoked by them.

RFC is considered an indicator of coupling.

Lack of Cohesion in Methods (LCOM): indicates the lack of cohesion between the methods in a class.

Chidamber and Kemerer propose that cohesion between methods can be captured by the use of common instance

variables. In this way, LCOM is usually computed as the number of method pairs that have no instance variables in

common minus the number of method pairs with common instance variables. Therefore, the smaller the value of

LCOM, the more cohesive is the class.

CK metrics cover different internal properties of software systems, such as complexity (WMC), coupling (CBO and

RFC), inheritance (DIT and NOC), and cohesion (LCOM). It is also important to state that, there are other object-

oriented metrics cited in the literature [1, 14]. Among such metrics, we can mention the number of lines of code

(SLOC), number of methods (NOM), number of attributes (NOA), a number of other classes referenced by a class

(FAN-OUT), etc. Software metrics have been proposed to analyze and evaluate software by quantitatively capturing a

specific characteristic or a view of a software system.

2. LITERATURE REVIEW:

Different methods to derive thresholds. These methods are organized groups: (a) extracting threshold using traditional

techniques (b) extracting threshold using error models. (c) Extracting Thresholds using Clustering Algorithms.

(a) Extracting Thresholds using Traditional Techniques: Erni and Lewerentz proposed the use of mean (μ) and
standard deviation (o) to derive a threshold T from project data [7]. For this, the authors used coupling,

complexity, and cohesion metrics. A threshold T is calculated as Tlow = μ+o or Thigh = μ—o, indicating that

high or low values of a metric can cause problems, respectively. This method is a common statistical technique

which data are normally distributed. However, the authors did not analyze the underlying distribution and only

applied it to one system, using three releases. The problem with the use of these methods is that they assume

that metric data are assumed to be normally distributed, thus compromising their validity in general. Software

metrics generally follow heavy-tailed distributions. Consequently, the use of means and the standard deviation is

not adequate.

(b) extracting threshold using error models: Shatnawi et al. investigated the use of the ROC curves to extract

thresholds for predicting the existence of bugs in different error categories [21]. They performed an experiment

using 12 source code metrics and applied the method to three releases of Eclipse. The metrics analyzed were:

number of attributes (NOA), number of operations (NOO), lack of cohesion of methods (LCOM), weighted

methods complexity (WMC), coupling between objects (CBO), coupling through data abstraction (CTA),

coupling through message passing (CTM), response for class (RFC), depth of inheritance hierarchy (DIT),

number of child classes (NOC), number of added methods (NOAM), and number of overridden methods

(NOOM). Catal et al. [4] developed a noise detection approach that uses threshold values for software metrics in

order to capture these noisy instances. The thresholds of Catal et al. were calculated using an adaptation of the

Shatnawi et al. [21] threshold calculation technique. They validated the proposed noise detection technique on

five public NASA datasets. The results showed that this method is effective for detecting noisy instances.

Although Shatnawi et al. and Catal et al. extracted thresholds using ROC curves, this method resulted in three

drawbacks in their results. First, threshold values can not be found. Second, for different releases of a system,

different thresholds were derived. Third, the methodology does not succeed in deriving monotonic thresholds,

i.e., lower thresholds were derived for higher error categories than for lower ones. Benlarbi et al. analyzed the

relation of source code metric thresholds and software failures using linear regressions. This study was

performed using five CK metrics (WMC, DIT, NOC, CBO, and RFC) and two C++ systems. The authors

compared two error probability models, one with a threshold and another without. For the model with a

threshold, zero probability of error exists for metric values below the threshold. They concluded that there was

no empirical indication supporting the model with a threshold as there was no significant difference among the

models. However, this result is only valid for this specific error prediction model and for the metrics the authors

took into account. Other models can, potentially, give different results. Duplicated code, overly complex

methods, non-cohesive classes, and long parameter lists are possible signs of degradation in the design of

software system [15]. These signs are usually known as design flaws, bad smells [10].

(c) Extracting Thresholds using Clustering Algorithms: Yoon et al. investigated the use of the K-means

clustering algorithm to identify outliers in the data measurements [17]. Outliers can be identified by

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 3, Issue - 6, June - 2017

Available online on – WWW.IJIRMF.COM Page 69

observations that appear either in isolated clusters (external outliers) or by observations that appear far away

from other observations within the same cluster (internal outliers). Oliveira et al. proposed a quantitative

approach based on source code metrics to determine similarity in object-oriented systems [13, 16]. This

approach also used K-means clustering algorithm to derive thresholds. The thresholds generated by this

approach represents profiles of classes of a system. The authors performed two case studies using a dataset with

more than 100 Java systems and 23 metrics. However, K-means suffers from important shortcomings: it requires

an input parameter that affects both the performance and the accuracy of the results. Thus, different thresholds

can be extracted from the same dataset and metric.

3. DISCUSSION:

In this paper, I provided a discussion about threshold extraction methods, which are summarized in Table 1 and 2. I

can observed that there are several methods for this purpose. However, there is not a method that is widely recognized

by researchers and software engineers as an effective instrument to control the internal quality of software systems. I

also observed that using benchmark of systems is an interesting approach, which tends to reflect the software

development practice.

Table 1: Thresholds approaches

Authors Systems Languages Metrics

Erni and Lewer- entz [7] 1 Smaltalk Complexity, coupling, and cohesion

Lanza and Marinesu [14] 82 C++ and Java Inheritance, coupling, size, and complexity

Alves et al. [2] 100 C# and Java

McCabe complexity, unit size, unit

interfacing, module interface , size and FAN-

IN

Ferreira et al. [9] 40 Java
LCOM, DIT, COF, Afferent coupling,

NOMP, and NOAP

Shatnawi et al. [21] 1 Java
CBO, RFC, WMC, LCOM, DIT, NOC, CTA,

CTM, NOAM, NOOM, NOA, and NOO

Catal et al. [4] 5 C and C++ SLOC, MCave, EC, DC

Benlarbi et al. [3] 2 C++ WMC, DIT, NOC, CBO, and RFC

Herbold et al. [8] 8
C, C++, C#,

and Java
Size, coupling, complexity, and inheritance

Oliveira et al. [16] 86 Java Size metrics

Oliveira et al. [13] 103 Java Size, coupling, complexity, and cohesion

Table 2: Thresholds approaches

Authors Method Weaknesses

Erni and Lewerentz [7]

Lanza and Marinescu [14]

mean and

standard

deviation

It requires an input parameter that affects both the performance and

the accuracy of the results

Alves et al. [2]
quantile function

analysis
The goal is to create quality profiles to rank entities

Ferreira et al. [9]

statistical

distribution

analysis

do not establish the percentage of classes tolerated in each

category

Shatnawi et al. [21]

Catal et al. [4]

ROC curves

This methodology does not succeed in deriving

monotonic thresholds and thresholds values can be not

found

Benlarbi et al. [3] linear regression There is no empirical evidence supporting the model

Herbold et al. [8] machine learning The methodology produces only a binary classification

Oliveira et al. [16]

 Oliveira et al. [13]

K-means

algorithm

It requires an input parame-

ter that affects both the per formance and the accuracy of

the results.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN – 2455-0620 Volume - 3, Issue - 6, June - 2017

Available online on – WWW.IJIRMF.COM Page 70

4. CONCLUSION:

Source code metrics can be used to find possible problems or chances for improvements in software quality. A variety

of metrics to measure source code properties like size, complexity, cohesion, and coupling have been proposed [1, 14].

How- ever, source code metrics are rarely used to support decision making because they are not easy to interpret [85,

95]. To promote the use of metrics as an effective measure- ment instrument, it is essential to establish credible

thresholds [2, 21, 8].

REFERENCES

1. Abreu, F. B. and Carapuça, R. (1994). Object-oriented software engineering: Mea- suring and controlling the

development process. In 4th International Conference of Software Quality (ICSQ), pages 3–5.

2. Alves, T. L., Ypma, C., and Visser, J. (2010). Deriving metric thresholds from benchmark data. In 26th IEEE

International Conference on Software ftaintenance (ICSft), pages 1–10.

3. Benlarbi, S., Emam, K. E., Goel, N., and Rai, S. (2000). Thresholds for object- oriented measures. In 11th

International Symposium on Software Reliability Engi- neering (ISSRE), pages 24–38.

4. Catal, C., Alan, O., and Balkan, K. (2011). Class noise detection based on software metrics and ROC curves.

Information Sciences, 181(21):4867–4877.

5. Chidamber, S. and Kemerer, C. (1991). Towards a metrics suite for object oriented design. In 6th Conference

Proceedings on Object-

6. oriented programming systems, lan- guages, and applications (OOPSLA), pages 197–211.

7. Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design. IEEE Transactions on

Software Engineering, 20(6):476–493.

8. Erni, K. and Lewerentz, C. (1996). Applying design-metrics to object-oriented frameworks. In 3rd IEEE

International Software metrics Symposium (ftETRICS), pages 64–74.

9. Herbold, S., Grabowski, J., and Waack, S. (2011). Calculation and optimization of thresholds for sets of

software metrics. Journal of Empirical Software Engineering, 16(6):812–841.

10. Ferreira, K., Bigonha, M., Bigonha, R., Mendes, L., and Almeida, H. (2011). Identifying thresholds for object-

oriented software metrics. Journal of Systems and Software, 85(2):244–257.

11. Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring: Improving the Design of

Existing Code. Addison Wesley.

12. Kan, S. H. (2002). ftetrics and ftodels in Software Quality Engineering. Addison- Wesley, 2 edition.

13. Kitchenham, B. (2009). What is up with software metrics?-A preliminary mapping study. JournaL of Systems

and Software, 83(1):37–51.

14. Oliveira, P., Borges, H., Valente, M. T., and Costa, H. (2013). Metrics-based de- tection of similar software.

In 25th International Conference on Software Engineering and Knowledge Engineering (SEKE), pages

447–450.

15. Lanza, M. and Marinescu, R. (2006). Object-Oriented ftetrics in Practice: Using Software ftetrics to

Characterize, Evaluate, and Improve the Design of Object- Oriented Systems. Springer.

16. Lehman, M. M. (1996). Blaws of software evolution revisited. In 5th European Workshop on Software

Process Technology (EWSPT), pages 108–124.

17. Oliveira, P. M., Borges, H. S., Valente, M. T., and Costa, H. A. X. (2012). Uma abordagem para

verificaï£¡ï£¡o de similaridade entre sistemas orientados a objetos. In XI Simpósio Brasileiro de Qualidade

de Software (SBQS), pages 1–15.

18. Yoon, K.-A., Kwon, O.-S., and Bae, D.-H. (2007). An approach to outlier de- tection of software

measurement data using the k-means clustering method. In 1st Symposium on Empirical Software

Engineering and fteasurement (ESEft), pages 443–445.

19. Newman, M. E. J. (2005). Power laws, pareto distributions and zipf’s law. Con- temporary Physics,

46(5):223–351.

20. Pressman, R. S. (2009). Software Engineering: A Practitioner’s Approach. McGraw-Hill Science, 7 edition.

21. Queiroz, R., Passos, L., Valente, M. T., Apel, S., and Czarnecki, K. (2014). Does feature scattering follow

power-law distributions? an investigation of five pre-processor-based systems. In 6th International Workshop

on Feature-Oriented Software Development (FOSD), pages 23–29.

22. Shatnawi, R., Li, W., Swain, J., and Newman, T. (2010). Finding software metrics threshold values using

ROC curves. Journal of Software ftaintenance and Evolution: Research and Practice, 22(1):1– 16.

23. Vale, G., Albuquerque, D., Figueiredo, E., and Garcia, A. (2015). Defining metric thresholds for software

product lines. G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving

products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.

