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Some Notations : (i) 𝑀 ×  denotes the set of all ×  matrices over a given field F. 

 (ii)   × ∈ 𝑀  denotes ×  is an ×  matrix in 𝑀  . 

 (iii)  ×  denotes the ×  matrix in 𝑀 , of which all the elements are zero. 

 (iv) If × = ( × ∈ 𝑀  and p, q are positive integers such that  ,  , then × = ( ×   .  

 

1. INTRODUCTION :  As per [1],  

Definition (0.1) The addition on 𝑀  is defined by,  for all  = ( ×  , = ( × ∈ 𝑀  ,  

 + = ( ×  , where = max{ , } , = max{ , } and for = , ,… . ,   ;   = , ,… . , ,   = ′ + ′  , where ′ = {  ,      ,     ,   ℎ  ,  for  = , ,… . ,   ;   = , , … . ,    and ′ ={  ,      ,     ,   ℎ  , for  = , ,… . ,   ;   = , , … . , . 

 

Definition (0.2) The multiplication on 𝑀  is defined by, for all  = ( × , = ( × ∈ 𝑀 ,  

 = ( ×  , where  for = , , … . ,   ;   = , , … . , ,   = ∑ i  { , }= . 

 

 Then 𝑀 ,+, .  is a weak hemi-ring with zero × = × ∈ 𝑀 . 

 

Definition (0.3) A weak hemi-ring is an algebraic structure , +, .  with two binary operations + and ‘ . ‘, 
respectively called, addition and multiplication, such that , +  is a commutative monoid with identity 0 (say), called 

zero;  , .  is a semi-group; multiplication is distributive over addition and  .  ≠ , . ≠ , ∀ ∈ , in general. 

 

Definition (0.4) For , ∈ ℕ,   × = (𝛿 ×  , where for  = , , … . ,  ;    = , ,… . ,        𝛿 = {   ,        = ,        ≠  

 

Theorem (0.1) Let  . Then for two non-zero matrices ×  , × ∈ 𝑀 , × × = ×   iff  × × = × × =  and for  = + , + ,… . ,  , each ℎ column   (say ) of ×  is zero. 

 

Corollary (0.1)  Let  . Then for two non-zero matrices ×  , × ∈ 𝑀 ,  × × = ×   iff  × × = × × =  and for  = + , + ,… . ,  , each  ℎ row   (say ) of ×  is zero. 

 

Theorem (0.2) For all ×  , × ∈ 𝑀 ,   
(i) × + × 𝑇 = ×𝑇 + ×𝑇     (ii) × × 𝑇 = ×𝑇 ×𝑇  . 

 

 

Abstract: Here we introduce concrete matrices and algebra of  them, i.e., ‘addition’ and ‘multiplication’ of 
concrete matrices. The extended matrix algebra

[1]
 𝑀 ,+, .  is a weak hemi-ring with zero  × = × ∈𝑀 , where 𝑀  is the set of all matrices over a given field F, but not a ring and so we lose many properties 

of ring. 

Observing this fact and following [1 – 5] we get motivation to this type of  matrix algebra (matrix addition and 

matrix multiplication) so that the algebraic structure forms a ring. Finally, we shall study some properties of this 

ring. 
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Main Results : 

Since 𝑀 ,+, .  is a weak hemi-ring we lose many properties of traditional matrix algebra. In fact algebra of 

concrete  matrices is nothing but squeezing of  𝑀 ,+, .  to give some concreteness and get a ring structure. 

 

Definition (1.1) For all , ∈ 𝑀 , − = + − [1]
. 

 

    Define a binary relation 𝜌 on 𝑀  by  𝜌 = {( ×  , × ∈ 𝑀 ×𝑀 ∶   × − × = ×  , = max{ , } , = { , }}. Then 𝜌 is an 

equivalence relation on 𝑀  and so we have the quotient set  𝑀 /𝜌. Let us denote this quotient set by 𝑀𝜌 . 

 

Definition (1.2) : Define ‘addition’ and ‘multiplication’ on 𝑀𝜌  by ∀ [ ], [ ] ∈ 𝑀𝜌 , [ ] + [ ] = [ + ]  and  [ ][ ] = [ ], where   +  and  are defined as per [1], and [ ] denotes the 𝜌 −equivalence class of ∈ 𝑀 . 

 

Note (1.1)  It can be easily checked that ‘Addition’ and ‘Multiplication’ on 𝑀𝜌  , as defined in definition(1.2) are 

well-defined. 

 

Theorem (1.1)  (𝑀𝜌 , +,   .  is a non-commutative ring without unity. 

Proof : Clearly 𝑀𝜌  is closed with respect to ‘addition’ and ‘multiplication’.  
Let  [ × ], [ × ], [ × ] ∈ 𝑀𝜌  be arbitrary. 

Now, [ × ] + [ × ] = [ × + × ] = [ × + × ][ ] = [ × ] + [ × ] and so ‘addition’ is 

commutative. 

Again, ([ ×  ] + [ × ] + [ × ] = [ × + × ] + [ × ] = [( × + × + × ] 
            = [ × + ( × + × ][ ] = [ × ] + [ × + × ] = [ × ] + ([ × ] + [ × ] . 

Therefore ‘addition’ is associative. 

 

We see that [ × ] ∈ 𝑀𝜌 , and  [ ×  ] + [ × ] = [ × + × ] = [ × ][ ]. Therefore [ × ] is additive 

identity in 𝑀𝜌 . 

Now [− × ] ∈ 𝑀𝜌 , and  [ × ] + [− × ] = [ × ]. Therefore  [− × ] is additive inverse of [ × ] in 𝑀𝜌 . 

Again ([ ×  ][ × ] [ × ] = [ × × ][ × ] = [( × × × ] 
            = [ × ( × × ][ ] = [ × ][ × × ] = [ × ]([ × ][ × ] . 

Therefore ‘multiplication’ is associative. 

 

 

Also, [ × ]([ × ] + [ × ] = [ × ][ × + × ] = [ × ( × + × ] 
         = [ × × + × × ][ ] = [ × × ] + [ × × ] = [ × ][ × ] + [ × ][ × ]. 
Therefore ‘multiplication’ is left distributive over ‘addition’. 
 

And ([ × ] + [ × ] [ × ] = [ × + × ][ × ] = [( × + × × ] 
         = [ × × + × × ][ ] = [ × × ] + [ × × ] = [ × ][ × ] + [ × ][ × ]. 
Therefore ‘multiplication’ is right distributive over ‘addition’. 
 

Hence (𝑀𝜌 , +,   .  is a ring. 

 

Since extended matrix multiplication is not commutative in 𝑀 , it is clear that multiplication on 𝑀𝜌  is not 

commutative. 

Since product of two matrices of given orders in 𝑀 [1]
 is, in general, a matrix of order different from the given 

orders, hence the ring (𝑀𝜌 , +,   .  has no unity. 

 

2. CONCRETE MATRIX ALGEBRA : 

Definition (1.3) A non-zero matrix × ∈ 𝑀  is said to be a concrete matrix if  the ℎ row of ×  is a non-

zero row and the ℎ column of ×  is a non-zero column. The only concrete zero matrix in 𝑀  is × . 

 

Concretization of Matrices : 
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Given any × ∈ 𝑀 , we can obtain the concrete matrix 𝑐 ×  from ×  as follows : 

If ×  be a concrete matrix then 𝑐 × = × . 

If ×  be not a concrete matrix then discard all the zero rows and zero columns only from ×  , starting from the 

last row and last column until we get concrete matrix, and denote this concrete matrix by 𝑐 ×  . 

This procedure is called concretization of a matrix × ∈ 𝑀  and the resultant concrete matrix 𝑐 ×  is called 

the concretized matrix of  ×  .  

 

Theorem (1.2)(i) For any × ∈ 𝑀 ,   [ × ] = [ 𝑐 × ] 
 (ii) Let  [ × ] ∈ 𝑀𝜌  and  × ∈ 𝑀 , the set of all concrete matrices over the field F.   

       For all × ∈ 𝑀 ,   × ∈ [ × ]  iff   × = ×  . 

Proof :  Trivial. 

 

Definition (1.4) Let  𝑀  be the set of all concrete matrices over a given field F . Define two binary operations ⊕, ⊙ on 𝑀 , called ‘addition’ and ‘multiplication’ of concrete matrices respectively, as  

follows:  ∀ ×  , × ∈ 𝑀 ,   × ⊕ × = ( × + × 𝑐
, the concretized matrix of  × + ×  ; 

and × + ×  is obtained as per [1].  And  ,   × ⊙ × = ( × × 𝑐
, the concretized matrix of  × ×  ; and × ×  is obtained as per [1]. 

 

Theorem (1.3) For all  ×  , ×  , × ∈ 𝑀 ,   ( × ⊕ × ⊕ × = ( × + × + × 𝑐
. 

Proof :  We have × ⊕ × = ( × + × 𝑐 ∈ [( × + × 𝑐] = [ × + × ] …………(1)                                                                   
               (by theorem(1.2)(i)). 

Therefore  ( × ⊕ × ⊕ × ∈ [( × ⊕ × + × ]   ……………………..(2) 
                                                                     ( by (1), replacing  ×  by × ⊕ ×  and ×  by ×  ) 

 Now [( × ⊕ × + × ] =  [ × ⊕ × ] + [ × ] = [ × + × ] + [ × ]     ( by (1) ) 

                                                     = [( × + × + × ] = [ × + × + × ][ ] …………(3) 
From (2) and (3) we get  ( × ⊕ × ⊕ × ∈ [ × + × + × ].  
 

Now ( × ⊕ × ⊕ ×   and  ( × + × + × 𝑐
  both are concrete matrices in  [ × + × + × ]  (by theorem(1.2)(i) )  and so by theorem(1.2)(ii)  we can say that  ( × ⊕ × ⊕ × = ( × + × + × 𝑐

. This completes the proof. 

 

Theorem (1.4) For all ×  , ×  , × ∈ 𝑀 , × ⊕( × ⊕ × = ( × + × + × 𝑐
. 

Proof : Almost similar to proof of theorem(1.3). 

 

Theorem (1.5) For all  ×  , ×  , × ∈ 𝑀 ,   
(i) ( × ⊙ × ⊙ × = ( × × × 𝑐

.      (ii) × ⊙ ( × ⊙ × = ( × × × 𝑐
 

Proof : Almost similar to proof of theorem(1.3). 

 

 

Theorem (1.6) For all  ×  , ×  , × ∈ 𝑀 ,   

(i) [ × ( × + × 𝑐] = [ × ( × + × ]     
(ii) [( ×  × 𝑐 +  × × 𝑐] = [ ×  × + × × ]    
(iii) [( × + × 𝑐 × ] = [( × + × × ]   
(iv) [( × × 𝑐 + × × 𝑐] = [ × × + × × ] 
Proof : (i) Since ( × + × − ( × + × 𝑐 = ×  , where = max{ , } , = max { , },  
hence × ( × + × − × ( × + × 𝑐 = × ( × + × − ( × + × 𝑐 = ×  .                                

 

Hence the result.  Similarly we can prove (ii), (iii) and (iv). 

 

Theorem (1.7)  𝑀 , ⊕ , ⊙  is a non-commutative ring without unity. 

Proof : From definition(1.4) it is clear that 𝑀  is closed with respect to  both ⊕ , ⊙. 
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Let ×  , ×  , × ∈ 𝑀  be arbitrary. 

Now  × ⊕ × = ( × + × 𝑐 = ( × + × 𝑐
          ( as per [1] ) 

                                                                    = × ⊕ × . 

Therefore ⊕ is commutative. 

 

From theorem (1.3) and theorem(1.4) we have ( × ⊕ × ⊕ × = × ⊕ ( × ⊕ ×  

Therefore ⊕ is associative. 

 

Now × ∈ 𝑀  and  × ⊕ × = × + × 𝑐 = ×𝑐 = ×   ( since × ∈ 𝑀  ). 

Therefore ×  is additive identity in  .  

 

Since × ∈ 𝑀 , hence − × ∈ 𝑀 , and  × ⊕ − × = ( × + − × 𝑐 = ×𝑐 = ×  . 

Therefore every element of 𝑀  has additive inverse in 𝑀 . 

 

From theorem(1.5)(i) and theorem(1.5)(ii) we have  ( × ⊙ × ⊙ × = × ⊙( × ⊙ × . 

Therefore ⊙ is associative. 

Now, 

 × ⊙( × ⊕ × = × ( × + × 𝑐 𝑐 ∈ [ × ( × + × 𝑐] = [ × ( × + × ] 
                              ( By Theorem(1.6)(i) ). 

 But [ × ( × + × ] = [ × × + × × ]  
               (since × ( × + × = × × + × × )

[1] 

Therefore  × ⊙( × ⊕ ×  is a concrete matrix in [ × × + × × ] …………. (1) 

Again,  ( × ⊙ × ⊕ × ⊙ × = ( × × 𝑐 + × × 𝑐 𝑐 ∈ [( × × 𝑐 + × × 𝑐] = [ ×  × + × × ]   ( By Theorem(1.6)(ii) ). 

 

Therefore ( × ⊙ × ⊕ × ⊙ ×  is a concrete matrix in [ × × + × × ] ……. (2) 
Therefore, from (1) and (2) and by Theorem(1.2)(ii), we have  × ⊙( × ⊕ × = ( × ⊙ × ⊕ × ⊙ × . 

Therefore left distributive property holds. 

 

Similarly, by Theorem(1.6)(iii), Theorem(1.6)(iv) and Theorem(1.2)(ii) we can prove the right distributive property.   

Therefore 𝑀 , ⊕ , ⊙  is a ring. 

 

Since extended matrix multiplication is not commutative in 𝑀 , it is clear that multiplication on 𝑀  is not 

commutative. 

 

Since product of two matrices of given orders in 𝑀  is, in general, a matrix of order different from the given orders, 

hence the ring 𝑀 , ⊕ , ⊙  has no unity. 

 

Theorem (1.8) The rings (𝑀𝜌 , +,   .  and  𝑀 , ⊕ , ⊙  are isomorphic. 

Proof : Define a map ∶   𝑀 , ⊕ , ⊙ ⟶ (𝑀𝜌 , +,   .  by ∀ × ∈ 𝑀 , × = [ × ]. 
Let  × , × ∈ 𝑀  be arbitrary such that  × = ( × , . ., [ × ] = [ × ].  
Then by Theorem(1.2)(ii) we have × = ×  . Therefore   is injective. 

 

Let [ × ] ∈ 𝑀𝜌  be arbitrary. Then ×𝑐 ∈ 𝑀  and  ×𝑐 = [ ×𝑐 ] = [ × ]  
               (by Theorem(1.2)(i) ) 

Therefore   is surjective. 

 

Let  × , × ∈ 𝑀  be arbitrary. 

Then ( × ⊕ × = [ × ⊕ × ] = [( × + × 𝑐] = [ × + × ] (by Theorem(1.2)(i)) 

          = [ × ] + [ × ]    = × + ( × . 
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And ( × ⊙ × = [ × ⊙ × ] = [( × × 𝑐] = [ × × ]  ( by Theorem(1.2)(i) ) 

         = [ × ][ × ]   = × ( × . 

Therefore  is a ring isomorphism from the ring 𝑀 , ⊕ , ⊙  to the ring  (𝑀𝜌 , +,   . . 

 

Note (1.2) Since the rings 𝑀 , ⊕ , ⊙  and  (𝑀𝜌 , +,   .  are isomorphic, to study about properties of these 

rings we shall consider any one of them whichever is suitable. 

Again it is clear that for , ∈ ℕ,    ×𝑐 =  , where = min{ , } , . ., × ∈ 𝑀    = .  

 

Now we shall study about some properties of this algebra of concrete matrices. 

 

Definition (1.5)  Let  × = ( × ∈ 𝑀  .  If   , then for  = , ,… ,   ;   = , + ,… , + − ,  ′   are called the diagonal elements of  ×  . 

If  >  , then for  = , , … ,   ;   = , + ,… , + − ,  ′   are called the diagonal elements of  ×  .In 

each case, the portion of ×  , formed by these diagonal elements is called the diagonal of × . 

All the elements of  ×  , other than the diagonal elements, are called the non-diagonal elements of ×  . 

 

Definition (1.6)  (a)  A matrix × = ( × ∈ 𝑀   is said to be symmetric if, when   , then for  = , , … ,  ;   = , , … . , −  , if  >  then  = + −   and when  , then for  = , ,… ,  ;   =, , … . , −  , if  <  then  = + −  . 

 

(b) A matrix × = ( × ∈ 𝑀   is said to be skew-symmetric if all the diagonal elements of  ×  are zero 

and when , then for  = , ,… ,  ;   = , ,… . , −  , if  >  then  = − + −  and when  , then for  = , ,… ,  ;   = , ,… . , −  , if  <  then   = − + −  . 

 

(c) A matrix × = ( × ∈ 𝑀   is said to be weak skew-symmetric if, when   , then for  =, ,… ,  ;   = , ,… . , −  , if  >  then  = − + −   and when , then for   = , , … ,  ;   = , , … . , −  , if  <  then  = − + −  . 

Example (1.1)  Among the concrete real matrices = ( −− − ), = ( 
−

− − ) ,  

C = ( 
−

− −− ) , the bold elements are diagonal elements and the non-bold elements are non-diagonal elements. 

Also A is symmetric, B is skew-symmetric and C is weak skew-symmetric. 

    

Theorem (1.9)  For two non-zero matrices ×  , × ∈ 𝑀 ,    × ⊙ × =  ×𝑐      =   and  × ⊙ × = × ⊙ × =  . 
Proof :  Let × ⊙ × =  ×𝑐  ………(1). 
Firstly we shall show that  = . If possible, let  ≠ . 

Let < . In this case, from (1) it is clear that  × × = ×  and so by Theorem(0.1) we have  × = ( ×      × −  which is not possible, since × ∈ 𝑀  and − . 

 

Similarly, from (1) , Corollary(0.1) and from the fact that × ∈ 𝑀  we have the impossibility < . 

Hence =  and so (1) becomes × ⊙ × =   , . ., × × 𝑐 =  …………(2). 
From (2) it is clear that  × × 𝑐 = × ×  so that (2) becomes  × × = ……(3) 
 

From (3) we have  × × =  …………(4) 
From(4) it is clear that  × × = × × 𝑐 = × ⊙ ×  

Therefore (4) becomes × ⊙ × =  …………(5) 
From (2) and (5), we have  × ⊙ × = × ⊙ × = . 

 



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD                ISSN – 2455-0620     Volume - 3,  Issue - 7,  July - 2017 

 

Available online on – WWW.IJIRMF.COM Page 26 

Converse part is trivial. 

 

Theorem (1.10)  For all × ∈ 𝑀 ,   ×𝑐 𝑇 = ×𝑇 𝑐          ( ×𝑇  is the transpose of × ). 

Proof : Trivial. 

 

Theorem (1.11)  For all × , × ∈ 𝑀 , ( × ⊕ × 𝑇 = ×𝑇 ⊕ ×𝑇 . 

Proof : ( × ⊕ × 𝑇 = ( × + × 𝑐 𝑇 = ( × + × 𝑇 𝑐
  (by theorem(1.10) ) 

                                            = ( ×𝑇 + ×𝑇 𝑐
 ( By theorem(0.2)(i) ) 

                                            = ×𝑇 ⊕ ×𝑇  

Theorem (1.12)  For all × , × ∈ 𝑀 , ( × ⊙ × 𝑇 = ×𝑇 ⊙ ×𝑇 . 

Proof : ( × ⊙ × 𝑇 = ( × × 𝑐 𝑇 = ( × × 𝑇 𝑐
  (by theorem(1.10) ) 

                                            = ( ×𝑇 ×𝑇 𝑐
   ( By theorem(0.2)(ii) ) 

                                            = ×𝑇 ⊙ ×𝑇  

Theorem (1.13)  For any  , ∈ 𝑀 , 

(i)  if A, B be symmetric, then  ⊕  may not be symmetric. 

(ii) if A, B  be skew-symmetric, then ⊕   may not be skew-symmetric. 

(iii) if A, B  be weak skew-symmetric, then ⊕   may not be weak skew-symmetric. 

Proof : (i)  Consider the real concrete symmetric matrices  

 = ( −−− − ) and  = ( 
      −  − − −−−      −  ) 

 
 . 

Then  ⊕ = ( 
       − − −− −  ) 

 
 which is not symmetric, since the (1, 4)th element of the matrix 

⊕  is not equal to the (2, 1)th element. 

 

(ii) Consider the real concrete skew-symmetric matrices  

 = ( −−  −   ) and  = ( 
            −       − −−−− −   −−  −        ) 

 
 . 

Then  ⊕ = ( 
      −   − −−−− −− −− −  ) 

 
 which is not skew-symmetric, since the (1, 4)th entry of the 

matrix ⊕  is not equal to negative of the (2, 1)th element. 

 

(iii) Since a skew-symmetric matrix is also a weak skew-symmetric matrix, the example, considered  in    

       (ii) is sufficient to establish the result. 

 
Note (1.3)  In our conventional matrix algebra we know that, if  A, B be two symmetric matrices of the same order 

then  AB  is symmetric iff  AB = BA. But in the algebra of concrete matrices, this result fails to be hold, discussed in 

theorem(1.14). 

 

Theorem (1.14)  If  A, B be two symmetric matrices in 𝑀  of the same order such that A⊙B = B⊙A, then A⊙B  

may not be symmetric. Again, if A⊙B  be symmetric then A⊙B  may not be equal to B⊙A . 

Proof :  For example, consider the real concrete symmetric matrices  = = ( ). Then clearly ⊙ = ⊙  ; but ⊙ = (    ) is not symmetric 
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Again consider the symmetric matrix =   −−   −   and  =   −     −  −                 −  −  of the same 

order. 

Then ⊙ =   −                                    is symmetric. Now ⊙ =   −    − −    −                     so that ⊙ ≠ ⊙ .  

 

Theorem (1.15)  We know that, for any square symmetric matrix  A and any matrix P in 𝑀 , 𝑇  is a symmetric 

matrix, but the result fails to be hold good if  A be a non-square concrete symmetric matrix. 

Proof : Consider the real non-square concrete symmetric matrix = (      − −          − )  and another real 

concrete matrix  =  −   −− −    . Then 𝑇⊙ ⊙ = −    − − −−−        is not symmetric. 

 

Theorem (1.16) For any matrix ∈ 𝑀 , the concrete matrix ⊕ 𝑇 is a square concrete symmetric matrix and 

the concrete matrix ⊕ − 𝑇  is a square concrete skew-symmetric matrix. 

Proof : Trivial.  

 
Theorem (1.17) Every concrete matrix  over a field F  can be expressed as sum of a concrete symmetric matrix and a 

concrete skew-symmetric matrix, but the expression is not, in general, unique, provided ℎ ≠ . 

Proof : Let = ( × ∈ 𝑀   be arbitrary. If  =  , then the result is obvious, as  × = × ⊕ × 𝑇 ⊕ × ⊕ − × 𝑇 . 

 

Let < .  Let = ( ×  be a symmetric matrix and  = ( ×  be a skew-symmetric matrix in  𝑀  

such that  = ⊕  , i.e., ( × = ( × ⊕( ×   ……………… (1) 
Then for  = , , … . ,   ;   = , , … . ,  ,  + =  ……………. (2) 

Since <  and  B , C  are symmetric and skew-symmetric matrices respectively, hence the diagonal elements of B  

and  A  are same ( since the diagonal elements of C  are zero ). Thus the diagonal elements of  B are determined.  

 

Now for the non-diagonal elements of  B and C we have 

for  =  , , … . ,   ;   = , , … . , −  , if  >  , then  = + −   …………… (3) 
 and = − + −   …………………….. (4) 
 

From (2) we have, for  =  , , … . ,   ;   = , , … . , −  , if  >  , then  + =  ……. (5) 
and  + − + + − = + −  , i.e. , − = + −   ………………. (6)   ( by (3), (4) ). 
 

From (5) and (6) we get  

For =  , , … . ,   ;   = , , … . , −  , if  >  , then  = − ( + + −  ……….. (7)   = − ( − + −    ………………. (8) , provided  char( F ) ≠ 2 . + − = = − ( + + −  ……….. (9)   ( by (7) ) + − = − = − − ( − + −  ………….. (10)    ( by (8) ). 

From (7), (8), (9) and (10), it is clear that the last row as well as the last column of the right hand side of (1) are non-

zero so that the ⊕ = +  and hence (2) is valid.  

Thus B  and  C are determined. 

If  > , then similarly, we have ( × 𝑇 = × ⊕ ×  ………… (11) , where ×  is a concrete 

symmetric matrix and ×   is a concrete skew-symmetric matrix.  

From (11), we get  = ( × = × ⊕ × 𝑇 = × 𝑇⊕ × 𝑇  ………. (12)  
            ( by theorem(1.11) ) 

Since ×  is a concrete symmetric matrix and ×   is a concrete skew-symmetric matrix, hence × 𝑇  is a 

concrete symmetric matrix and × 𝑇 is a concrete skew-symmetric matrix. 

Hence the result. 
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To establish the last part of the theorem, consider the real concrete matrix =     −          −  .  

Then = ⊕ 𝑇 ⊕ ⊕ − 𝑇 =         −   − ⊕  −  −  −      − − −  ……. (13) 

and  ⊕ 𝑇  is concrete symmetric and ⊕ − 𝑇  is concrete skew-symmetric . 

Again we see that  =       − ⊕ (−− −  )  ………….. (14) 

and the first matrix of right hand side of  (14) is concrete symmetric and second one is concrete skew-symmetric. 

Clearly the expressions (13) and (14) are distinct. 

 

Again consider another example in which 

= ( −− − − ) . Then = −− 79 − − 7 9− )⊕ − 5− −
5 ) 

                                                                                                                                          ……………. (15) 
and the first matrix of right hand side of  (15) is concrete symmetric and second one is concrete skew-symmetric. 

Again  = ( −− − )⊕ (−− − )   ……………….. (16) 

and the first matrix of right hand side of  (16) is concrete symmetric and second one is concrete skew-symmetric. 

Clearly the expressions (15) and (16) are distinct. 

 

3. CONCLUSION : Further study may be continued on the ring 𝑀 , ⊕ , ⊙  or  (𝑀𝜌 , +,   . . 
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