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Abstract: Here we introduce concrete matrices and algebra of them, i.e., ‘addition’ and ‘multiplication’ of
concrete matrices. The extended matrix algebra™ (M(F), +,.) is a weak hemi-ring with zero O1x1 = (0)1x; €
M(F), where M(F) is the set of all matrices over a given field F, but not a ring and so we lose many properties
of ring.

Observing this fact and following [I — 5] we get motivation to this type of matrix algebra (matrix addition and
matrix multiplication) so that the algebraic structure forms a ring. Finally, we shall study some properties of this
ring.
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Some Notations : (i) M,,, ., (F) denotes the set of all m X n matrices over a given field F.

(i1) Apxn € M(F) denotes A, xp 1S an m X n matrix in M(F) .

(iii) Oy, denotes the m X n matrix in M (F), of which all the elements are zero.

(iv) If Ay, = (aij)mxn € M(F) and p, q are positive integers such that p <m, q < n, then Apyq = (aij)pxq .

1. INTRODUCTION : As per [1],
Definition (0.1) The addition on M(F) is defined by, forall A = (a; j)mxn, B = (bij)pxq € M(F),
A+ B = (Cij)TXS , where r = max{m,p}, s = max{n,q}and fori =1,2,....,r ; j=12,...,5,

if 1<i<m, 1<j<n

a..
cij = ajj + bj; , where a’--={ v .
0 , otherwise

ij » ij

0, otherwise

, for i=12,...,7; j=12,...,s and bl-'j=

<
=9 for i=12 . ; j=12 0,5

Definition (0.2) The multiplication on M(F) is defined by, for all 4 = (a; j)mxn, B = (b, j)pxq € M(F),

AB = (cy), .+ where fori=1,2,...,m; j=12,..,q, c;= MDY Qb

Then (M(F), +,.) is a weak hemi-ring with zero 051 = (0)1x1 € M(F).

Definition (0.3) A weak hemi-ring is an algebraic structure (H,+,.) with two binary operations + and * . °,
respectively called, addition and multiplication, such that (H, +) is a commutative monoid with identity O (say), called

zero; (H,.) is a semi-group; multiplication is distributive over addition and a.0 # 0,0.a # 0,V a € H, in general.

Definition (0.4) For,n €N, Iy, = (aij)mxn ,where for i =1,2,....,m; j=12,...,n
5. = {1 , if 1=
U0, if i#j
Theorem (0.1) Let <n . Then for two non-zero matrices Apxn,Bmxn € M(F), AmsxnBmxn = Imxn  iff
ApmxmBmxm = BmxmAmxm = Im and for j =m +1,m + 2, ....,n, each j** column B;j (say ) of Bp,xp is zero.

Corollary (0.1) Let n <m . Then for two non-zero matrices Apxn »Bmxn € M(F), AmxnBmxn = Imxn  iff
ApsnBnxn = BuxnAnxn = Inand for i =n+ 1,n+2,....,m, each i*" row A; (say ) of A,y is zero.

Theorem (0.2) For all A,,xn , Bxn € M(F),
(1) (Amxn + Bmxn)T = Aznxn + ngq (i) (Amanmxn)T = ngqAmen .
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Main Results :
Since (M(F),+,.) is a weak hemi-ring we lose many properties of traditional matrix algebra. In fact algebra of
concrete matrices is nothing but squeezing of (M (F),+,.) to give some concreteness and get a ring structure.

Definition (1.1) For all A,B € M(F), A—B = A+ (—1)B"".

Define a binary relation p on M (F) by
p= {(Amxn ,Bpxq) € M(F) X M(F) : Apxn — Bpxq = Orxs, ¥ = max{m,p},s = max{n,q}}. Then p is an
equivalence relation on M (F) and so we have the quotient set M (F)/p. Let us denote this quotient set by M, (F).

Definition (1.2) : Define ‘addition’ and ‘multiplication’ on M, (F) by V [A], [B] € M,,(F), [A] + [B] = [A + B] and
[A][B] = [AB], where A + B and AB are defined as per [1], and [A] denotes the p —equivalence class of A € M(F).

Note (1.1) It can be easily checked that ‘Addition’ and ‘Multiplication’ on M, (F) , as defined in definition(1.2) are
well-defined.

Theorem (1.1) (Mp (F), +, ) is a non-commutative ring without unity.

Proof : Clearly M, (F) is closed with respect to ‘addition’ and ‘multiplication’.

Let [Apmxnl [Bpxq], [Crxs] € M, (F) be arbitrary.

Now, [Apmxn] + [Bpxq] = [Amxn + Bpxq] = [Bpxq + Ay ]I = [Bpxq] + [Anxn] and so  ‘addition’ s
commutative.

Again, ([Amxn 1+ [Bpxq]) + [Crxs] = [Amxn + Bqu] + [Crxs] = [(Amxn + Bpxq) + Crxs]

heref = [Adm(;n + (Bpxq + Crxs)][l] = [Amxn] + [Bpxq + Crxs] = [Amxn] + ([Bpxq] + [Crxs])-
Therefore ‘addition’ is associative.

We see that [01yq1] € M,(F), and [Apyn |+ [01x1] = [Apxn + 01x1] = [Apmxn]™). Therefore [0;x4] is additive
identity in M, (F).

Now [—Amxn] € My(F), and [Apxn] + [—Amxn] = [01x1]- Therefore [—Ap,xp] is additive inverse of [Ap,x,] in
M, (F).

Again ([Amxn ][Bpxq])[CTXS] = [Amanpxq][Crxs] = [(Amanpxq)Crxs]

= [Amxn (BoxqCrss)]™ = [Amscn] [BoxgCrcs] = [Amsen] ([Byscq] [Crxs])-

Therefore ‘multiplication’ is associative.

Also, [Amxn]([Bpxq] + [Crxs]) = [Amxn] [Bpxq + Crxs] = [Amxn(Bpxq + Crxs)]

= [Amanpxq + AmxnCrxs][l] = [Amanpxq] + [Amxncrxs] = [Amxn] [Bpxq] + [Amxn] [Crxs]~
Therefore ‘multiplication’ is left distributive over ‘addition’.

And ([Bpxq] + [Crxs])[Amxn] = [Bpxq + Crxs] [Amxn] = [(Bpxq + Crxs)Aan]

= [Bpqumxn + Crstmxn][l] = [Bpqumxn] + [Crstmxn] = [Bpxq][Amxn] + [Crxs] [Amxn]~
Therefore ‘multiplication’ is right distributive over ‘addition’.

Hence (Mp (F), +, ) is a ring.

Since extended matrix multiplication is not commutative in M (F), it is clear that multiplication on M, (F) is not
commutative.

Since product of two matrices of given orders in M(F)™ is, in general, a matrix of order different from the given
orders, hence the ring (Mp (F), +, ) has no unity.

2. CONCRETE MATRIX ALGEBRA :
Definition (1.3) A non-zero matrix A,,x, € M(F) is said to be a concrete matrix if the m" row of A,y is a non-
zero row and the nt" column of A,,,x,, is a non-zero column. The only concrete zero matrix in M (F) is O;x.

h

Concretization of Matrices :
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Given any A, x,, € M(F), we can obtain the concrete matrix A,,«, from A4,,, as follows :

If A,,xn be a concrete matrix then A€,y = Amxn-

If A,,,xn be not a concrete matrix then discard all the zero rows and zero columns only from A, , starting from the
last row and last column until we get concrete matrix, and denote this concrete matrix by A, -

This procedure is called concretization of a matrix A,,x, € M(F) and the resultant concrete matrix A,y is called
the concretized matrix of A,y -

Theorem (1.2)(i) For any A € M(F), [Amxnl] = [ASmxn]

(ii) Let [Apmxn] € My (F) and Apyyn, € CM(F), the set of all concrete matrices over the field F.
For all B,xq € CM(F), Bpyxq € [Amxn] iff Bpxg = Amxn -

Proof : Trivial.

Definition (1.4) Let CM(F) be the set of all concrete matrices over a given field F' . Define two binary operations
@, O on CM(F), called ‘addition’ and ‘multiplication’ of concrete matrices respectively, as

follows: V Apxn,Bpxg € CM(F), Amxn @ Bpxq = (Aan + Bpxq)c, the concretized matrix of Apxpn + Bpxq 3

and Apxn + Bpxq is obtained as per [1]. And , Apxn © Bpxg = (Amanqu)c, the concretized matrix of
AmxnBpxq > and Ay Bpxq 18 obtained as per [1].

[
Theorem (1.3) For all Ay, Bpxg, Crxs € CM(F), (Amxn @ Bpxq) ® Crxs = (Amxn + Bpxq + Crxs) -

Proof : We have Amyn @ Bpwg = (Amxn + Boxq)” € [(Amxn + Bpxq)c] = [Amsn + Boxg| ++vrvree. (1)
(by theorem(1.2)(i)).
Therefore (Amxn @ Bpxq) D Crxs € [(Amxn D Bpxq) + Crxs] oovvveeeeivieiiinienne, ()

(by (1), replacing Ayxn by Amxn © Bpxq and Bpxq by Crxs )
Now [(Amxn @ Bpxq) + Crxs| = [Amsn ® Bpxq| + [Crxsl = [Amxn + Boxq] + [Crxs] — (by (1))

= [(Amxn + Byxq) + Crxs] = [Amscn + Boxg + Crscs]™ v 3)
From (2) and (3) we get (Amxn @D Bpxq) @ Crxs € [Amxn + Bpxqg + Crxs-

Now (Aan @ Bpxq) @ C,«s and (Aan + Bpxgq + CTXS)C both are concrete matrices in
[Aan + Byxg T Crx S] (by theorem(1.2)(i) ) and so by theorem(1.2)(ii) we can say that

(Aan D Bpxq) D Crxs = (Aan + Bpxq + CrXs)C. This completes the proof.

Theorem (1.4) For alldnp , Byxg » Crxs € CM(F), Amxn @ (Boxg @® Crxs) = (Amxn + Bpxg + Crxs) -
Proof : Almost similar to proof of theorem(1.3).

Theorem (1.5) For all A,y ,Bpxg, Crxs € CM(F),

. c . c
(1 (Amxn © Bpxq) O Crxs = (Amanpqurxs) . (i) Appxn © (Bqu © Crxs) = (Amanpqurxs)
Proof : Almost similar to proof of theorem(1.3).

Theorem (1.6) For all A,y , Bpxg, Crxs € CM(F),

) [Amscn Bpxq + Crxs) ] = [Amn(Bpcq + Crs)]

(i) | (Amscn Bpxq)” + (AmxnCrxs)®| = [Amxn Bpxg + AmxnCrxs]

(i) [ (Bpq + Crxs) Amxn| = [(Boxq + Crxs)Amxn]

@) | (BpxgAmxn)” + CrxsAmxn)] = [ ByxgAmxn + CrxsAmcn]

Proof : (i) Since (Bpxq + Crxs) - (Bpxq + CTXS)C = Oy » Where u = max{p,r}, v = max{q, s},

hence Apmscn (Bpsq + Crxs) = Amscnr (Bpxq + Crs)” = Amscn (Boxg + Crxcs) = (Byxg + Crxs)”) = O

Hence the result. Similarly we can prove (ii), (iii) and (iv).

Theorem (1.7) (CM(F), &, ©) is a non-commutative ring without unity.
Proof : From definition(1.4) it is clear that CM (F) is closed with respect to both @, ©.
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Let Apyxn » Bpxq» Crxs € CM(F) be arbitrary.

c c

Now Apxn @ Bpxq = (Amxn + Bpxq) = (Bpxq + Amxn) (asper[1])
= Bpxq @ Amxn-

Therefore @ is commutative.

From theorem (1.3) and theorem(1.4) we have (Apmxn @D Byxg) @ Crxs = Amxn @ (Byxg @ Crxs)
Therefore € is associative.

Now 0151 € CM(F) and Apun @D O1x1 = (Amxn + 01x1)¢ = Afnxn = Amxn (since Ay € CM(F) ).
Therefore 0, is additive identity in (F) .

Since A;xn € CM(F), hence —Apyxn € CM(F), and

C
Amxn @ (—Amxn) = (Amxn + (_Amxn)) = Omxn = O1x1 -
Therefore every element of CM (F) has additive inverse in CM (F).

From theorem(1.5)(i) and theorem(1.5)(ii) we have (Apmxn © Bpxq) © Crxs = Amxn © (Bpxq © Crxs)-
Therefore ( is associative.
Now,

c
Amsn O (Bpxq @ Crxs) = (Amxn(Bpxq + Crxs)c) € [Amxn(Bpxq + Crxs)C] = [Amxn(Bpxq + Crxs)]

( By Theorem(1.6)(i) ).
But [Amxn(Bqu + Crxs)] = [AanBqu + AmxnCrxs]

(since Amxn(Bpxq + Crxs) = Amanpxq + AmxnCrxs)[I]
Therefore A,,xn, O (Bpxq D Crxs) is a concrete matrix in [AanBqu + AanCrxs] ............. 0]
c

Again, (Amsn O Byxg) @ (Amxn O Crus) = ((AmsnBpxq)” + AmxnCrxs)®) €
[(Amanpxq)c + (Amxncrxs)c] = [Amxn Bpxq + Amxncrxs] ( By Theorem(1.6)(ii) ).

Therefore (Amxn © Bpxq) ® (Amxn O Crxs) is a concrete matrix in [ApxnBpxq + AmxnCrxs| - )
Therefore, from (1) and (2) and by Theorem(1.2)(ii), we have

Amxn O (Bpxq @ Crxs) = (Amxn ©) Bpxq) D (Amxn O Crxs)-
Therefore left distributive property holds.

Similarly, by Theorem(1.6)(iii), Theorem(1.6)(iv) and Theorem(1.2)(ii) we can prove the right distributive property.
Therefore (CM(F), @, © ) is aring.

Since extended matrix multiplication is not commutative in M(F), it is clear that multiplication on CM(F) is not
commutative.

Since product of two matrices of given orders in M (F) is, in general, a matrix of order different from the given orders,
hence the ring (CM(F), @, © ) has no unity.

Theorem (1.8) The rings (Mp (F), +, ) and (CM(F), @, ©) are isomorphic.

Proof : Defineamap f : (CM(F), @, ©) — (M,(F), +, .) by ¥V Apmxn € CM(F), f(Amxn) = [Amxn]-
Let Amxn, Bpxq € CM(F) be arbitrary such that f(Amxn) = f(Bpxq) i€ [Amxn] = [Bpxql-

Then by Theorem(1.2)(ii) we have Ay, = Bpxq - Therefore f is injective.

Let [A;;xn] € M, (F) be arbitrary. Then A7y, € CM(F) and f(Afxn) = [Afuxn] = [Amxnl
(by Theorem(1.2)(1) )
Therefore f is surjective.

Let Apxn, Bpxq € CM(F) be arbitrary.
Then £ (Amsn @ Byxg) = [Amxn ® Byxql = | (Amsn + Byxq) | = [Amscn + Byxq] (by Theorem(1.2)(i))
= [Aan] + [Bpxq] = f(Aan) + f(Bpxq)-
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And f(Amxn © Byxq) = [Amsn © Byxql = |(AmxnBoxg) | = [AmsnBpxq] (by Theorem(1.2)(i))

= [Amxn] [Bpxq] = f(Amxn)f(Bpxq)-
Therefore f is a ring isomorphism from the ring (CM(F), @, ©) to the ring (Mp (F), +, )

Note (1.2) Since the rings (CM(F), &, © ) and (Mp (F), +, ) are isomorphic, to study about properties of these
rings we shall consider any one of them whichever is suitable.
Again it is clear that for,n € N, I, = I, , where p = min{m,n}, i.e,, I, € CM(F)iff m =n.

Now we shall study about some properties of this algebra of concrete matrices.

Definition (1.5) Let Ay, = (a;) € CM(F). If m <nthenfor i =12,..,m ;
j=1ii+1,..,i+(n—m), a;'s are called the diagonal elements of Ay, .

If m>n, thenfor j=12,.,n; i=j,j+1,..,j+(m—n), a;'s are called the diagonal elements of Ay, In
each case, the portion of A,,«, , formed by these diagonal elements is called the diagonal of A, x,.

All the elements of A,,, , other than the diagonal elements, are called the non-diagonal elements of A, «, -

Definition (1.6) (a) A matrix A,xn, = (ai f)mxn € CM(F) is said to be symmetric if, when m < n , then for
i=23..m; j=12,...m—1,if i >j then aij = Aj(i+n-m) and when m > n , then for j =2,3,...,n; i =
1,2, e, L — 1 , if i <jthCI1 al-j = a(j+m_n)l- .

(b) A matrix Ay xn = (ai j)mxn € CM(F) is said to be skew-symmetric if all the diagonal elements of A, are zero

and whenm < n, thenfor i =2,3,....m; j=12,...,m—1,if i > jthen
ajj = —Qj(iyn-m) and whenm = n , thenfor j =23,..,n; i =12,...,n—1,if i <j then

Aij = —A(j+m-n)i -

(¢) A matrix Ayxn = (aij)mxn € CM(F) is said to be weak skew-symmetric if, when m <n , then for i=

23,.m; j=12,..,m—1,if i >jthen a;; = —aji1n-m) and when m = n, then for
j = 2,3, e, n i= 1,2, e, 1 — 1 ,lf i <jthen aij = —a(j+m_n)l- .
0 1 -3
2 1 0 -1 0O 0 4
Example (1.1) Among the concrete real matricesA=| 0 5 2 3 |,B=| 0 0 0 |,
-1 3 -5 7 -1.0 0
3 -4 0
2 1 -3
0 5 4
C=1(1 0 8 |, the bold elements are diagonal elements and the non-bold elements are non-diagonal elements.
-1 -8 9
3 -4 1

Also A is symmetric, B is skew-symmetric and C is weak skew-symmetric.

Theorem (1.9) For two non-zero matrices A;xn » Bmxn € CM(F), Amxn © Bmxn = Iaxn iff
m=mn and Apuxm O Bnsxm = Bmxm © Amsim = Im -

Proof : Let Ayun © Bixn = Iixa cvvvvee-- ().

Firstly we shall show that m = n. If possible, let m # n.

Let m < n. In this case, from (1) it is clear that A, xnBmxn = Imxn and so by Theorem(0.1) we have
Bixn = (Bmxm Omx(n_m)) which is not possible, since By,x, € CM(F) andn —m > 1.

Similarly, from (1) , Corollary(0.1) and from the fact that A,,,»,, € CM(F) we have the impossibility n < m.

Hence m = n and so (1) becomes A,sm © Bmxm = Im» i€ (AmsxmBmxm) = Im ceovevnnenn. (2).
From (2) it is clear that (A;xmBmxm)¢ = AmxmBmxm S0 that (2) becomes A xmBmxm = Im-+---- 3)
From (3) we have BpumAmsxm = Im «ovovvvvenne. 4)

From(4) it is clear that By,xmAmxm = BmxmAmxm)¢ = Bmxm © Amxm

Therefore (4) becomes Byxm © Amsm = Iy covvvenvnnn. (5)

From (2) and (5), we have Apxm © Bmxm = Bmxm © Amxm = Im.

Available online on - WWW.IJIRMF.COM Page 25



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN - 2455-0620 Volume - 3, Issue -7, July - 2017

Converse part is trivial.

Theorem (1.10) For all 4,,,,, € CM(F), (AS%xn)T = (AT )¢ (AT, is the transpose of Apyp).
Proof : Trivial.

Theorem (1.11) For all Ay, Byxg € CM(F), (Amsn @ Byxq)' = Alixn @ Blyq.

T c
Proof : (Amxn ® Bpxg) = ((Amxn + Bpxq)c) = ((Amxn + Bpxq)T) (by theorem(1.10) )
= (AT n + Blxg) ( By theorem(0.2)(i) )
= Amen @ ngq

Theorem (1.12) For all Ay, Byxg € CM(F), (Amsn © Byxq)' = Blvg O Alin.

T e\T T\¢
Proof : (Amun O Bpxq) = ((Amanpxq) ) = ((Amanpxq) ) (by theorem(1.10) )
= (BlqA%n)" ( By theorem(0.2)(ii) )
= Bqu © Amen
Theorem (1.13) For any A,B € CM(F),
(i) if A, B be symmetric, then A @ B may not be symmetric.
(ii) if A, B be skew-symmetric, then A @ B may not be skew-symmetric.
(iii) if A, B be weak skew-symmetric, then A @ B may not be weak skew-symmetric.
Proof : (i) Consider the real concrete symmetric matrices
2 4 3 4 5 6 7

3 2 0 -1 4 -1 0 -3 -3 -2 1
A=<0 7 -1 3>andB= 5 -3 6 7 3 4 5
-1 3 —6 7 6 -2 4 5 2 7 4
7 1 5 4 3 -3 4
5 6 3 3 5 6 7
4 6 -1 0 -3 -2 1
Then A@GB=|4 0 0 14 3 4 5 | which is not symmetric, since the (1, 4)th element of the matrix
6 -2 4 5 2 7 4
7 1 5 4 3 -3 4

A @ B is not equal to the (2, 1)th element.

(ii) Consider the real concrete skew-symmetric matrices

0 O 0 4 5 6 7
(0 0 2 —1) —4 0 0 0 -3 -2 1
A=|-2 0 0 6 Jand B=| -5 3 0 0 0 4 5
1 -6 0 O -6 2 —4 0 0O 0 4
-7 -1 -5 -4 0O 0 O
0 0 2 3 5 6 7
-6 0 0 6 -3 -2 1
Then A@B=|-4 -3 0 0 0 4 5 | which is not skew-symmetric, since the (1, 4)th entry of the
-6 2 -4 0 0 O0 4
-7 -1 -5 -4 0 0 O

matrix A @ B is not equal to negative of the (2, 1)th element.

(iii) Since a skew-symmetric matrix is also a weak skew-symmetric matrix, the example, considered in
(ii) is sufficient to establish the result.

Note (1.3) In our conventional matrix algebra we know that, if A, B be two symmetric matrices of the same order
then AB is symmetric iff AB = BA. But in the algebra of concrete matrices, this result fails to be hold, discussed in
theorem(1.14).

Theorem (1.14) If A, B be two symmetric matrices in CM (F) of the same order such that AGOB = BOA, then AOB
may not be symmetric. Again, if AQB be symmetric then AGB may not be equal to BOA .
Proof : For example, consider the real concrete symmetric matrices
1 2 3 4 19 33 39 45
A=B= <3 5 6 7). Thenclearly O B=B O A;butAOB = (42 73 87 101 ) is not symmetric
4 7 8 9 57 99 118 137
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2 1 0 -1 2 -26 1 -1
Again consider the symmetric matrix A = ( 0 5 2 3> and B = ( 1 8 1 8 > of the same
-1 3 -5 7 -1 8 -1 -15
order.
5 —44 3 6 3 —-125 =57 =73
Then A O B = ( 3 56 3 10 > is symmetric. Now B (O A = ( 1 44 11 30 > so that
6 10 7 100 -1 36 21 18
AOB#BQOA.

Theorem (1.15) We know that, for any square symmetric matrix A and any matrix P in M(F), PTAP is a symmetric
matrix, but the result fails to be hold good if A be a non-square concrete symmetric matrix.

1 2 3 4 5
Proof : Consider the real non-square concrete symmetric matrix 4 = <4 -1 -5 3 2) and another real
5 2 1 0 -2
1 2 3 4 —-26 66 84 158
. |4 -3 0 -1 T _| 67 —-65 —6 —48]) . :
concrete matrix P = 3 1 2 1| ThenP" QAQOP = 62 —15 73 89 is not symmetric.
-2 0 1 3 77 —41 64 66

Theorem (1.16) For any matrix A € CM(F), the concrete matrix A @ AT is a square concrete symmetric matrix and
the concrete matrix A @ (—AT) is a square concrete skew-symmetric matrix.
Proof : Trivial.

Theorem (1.17) Every concrete matrix over a field F' can be expressed as sum of a concrete symmetric matrix and a
concrete skew-symmetric matrix, but the expression is not, in general, unique, provided char (F) # 2.

Proof : Let A = (al- f)mxn € CM(F) be arbitrary. If m = n, then the result is obvious, as

Amxn = %(Amxn EB (Amxn)T) Q%(Amxn @ (_(Amxn)T))-

Let m<n. Let B= (bi j)mxn be a symmetric matrix and C = (cl- j)mxn be a skew-symmetric matrix in CM(F)

suchthat A=B@®C.ie, (ay) =(by) D (cy) oo (1)

Then for i = 1, 2, e, M ] = 1, 2, e,y bU + Cij = al-j ................ (2)

Since m < nand B, C are symmetric and skew-symmetric matrices respectively, hence the diagonal elements of B
and A are same ( since the diagonal elements of C are zero ). Thus the diagonal elements of B are determined.

Now for the non-diagonal elements of B and C we have

for i = 2,3, e, M ] = 1,2, e, M — 1 , if i >] ,then bU = (f4AM=TM) crrrrrereeeeens (3)

and Cij = TCji4n—m) «eveerrrrerrrnereeaninnen (4)

From (2) we have, for i = 2,3,...,m; j=1,2,....m—1,if i >j, then bj; +¢;; =a; ....... ®))
and bj(i+n—m) + Cj(i+n—m) = aj(i_m_m) . i.€. . bU - Cij = aj(i_m_m) ................... (6) (by (3), (4) )
From (5) and (6) we get

For=2,3,...m; j=1,2,....m—1,if i >, then b;; = 27(a;; + Gj(irn-m)) -----verer (7)

Cij = 2‘1(al~j - aj(i+n_m)) ................... (8) s provided char( F)+2.

bj(i+n—m) = bij = 2‘1(aij + aj(i+n_m)) ........... (9) (by (7) )

Ci(i+n-m) = —Cij = —2_1(al~j - aj(i+n_m)) .............. (10) (by (8) ).

From (7), (8), (9) and (10), it is clear that the last row as well as the last column of the right hand side of (1) are non-
zero so that the B @ C = B + C and hence (2) is valid.
Thus B and C are determined.

T
If m > n, then similarly, we have ((aij)mxn) =Enym D Frscm ceevenvennn. (11) , where E, .., is a concrete
symmetric matrix and F,,,,, is a concrete skew-symmetric matrix.
From (11), we get A = (a; j)mxn = (Epsem D Frxm)” = Enxn)” ® Frsem)T oeevnn... (12)

( by theorem(1.11) )

Since E,x;, is a concrete symmetric matrix and F,,, is a concrete skew-symmetric matrix, hence (E,xn,)7 is a

concrete symmetric matrix and (F,,x,,)7 is a concrete skew-symmetric matrix.
Hence the result.
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1 1 3 4
To establish the last part of the theorem, consider the real concrete matrix = L; S i (3)
2 1 =2 0
2 5 0 6 0 -3 6 2
1 1 i[5 4 1 4 il 3 o 1 2
ThenA=-(ADAT) D-(AD (—AT)) == = R IR 13
A= A0MNG;UueCAN =5 > T o Yo 3 % 1 2]
6 4 -2 0 -2 -2 =20
and %(A @ AT) is concrete symmetric and % (A @ (—AT)) is concrete skew-symmetric .
15 ; i 0 0 1 4
Again we see that A = @l-1 0 0 3| .coeeiiin. (14)
13 4 4 -3 0 0
2 1 -2 T

and the first matrix of right hand side of (14) is concrete symmetric and second one is concrete skew-symmetric.
Clearly the expressions (13) and (14) are distinct.

Again consider another example in which

2 1 -1 7 2 0O 0 0 s 1
2 1 -1 -1 5 _7 3 2 T37 2 _5 o0 o0 z 2
A=<—6 3 2 5 0>.ThenA= 92 ) 5 _% Y i . 0 %
obsoze 2 23 2 6/ \7z 200
................ (15)
and the first matrix of right hand side of (15) is concrete symmetric and second one is concrete skew-symmetric.
2 1 -5 -2 5 0 0 4 1
Again A = <—2 3 2 4 0) S5 <—4 0 0 1) .................... (16)
5 0 3 2 6 -1 -1 0 O

and the first matrix of right hand side of (16) is concrete symmetric and second one is concrete skew-symmetric.
Clearly the expressions (15) and (16) are distinct.

3. CONCLUSION : Further study may be continued on the ring (CM(F), &, ©® ) or (Mp (F), +, )
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