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1. INTRODUCTION: 

Convection is a Mode of heat transfer in fluids. It depends on the fact that fluids expand when heated and thus 
undergo a decrease in density. As a result, the warmer, less dense portion of the fluid will tend to rise through the 
surrounding cooler fluid. 

According to Matthew p, Wilcox (2013) fluid flow can be grouped into two categories, laminar or turbulent 
flow. In laminar flow, the motion of the fluid particles is very orderly and fluid moves in sheets that slip relative to 
each other. Turbulence convection is an irregular or disturbed flow. It behaves with a chaotic and unpredictable 
motion. Beyond a particular temperature difference, the heated fluid rises and cooled fluid falls thereby become 
turbulent. 

The study of natural convection in an enclosure has many engineering applications ranging from simple space 
heating of domestic rooms to parts of industrial and nuclear installations. For example this kind of flows occurs in 
building technology, cooling of electronic equipment and material processing. 
For the numerical calculation of turbulent flows, an averaging of the Navier-Stokes equations of motion is carried out 
with respect to time. This averaging leads to Reynolds Averaged Navier-Stokes equations (RANS). Additional terms 
with new variables occur in these partial differential equations because of the averaging. Consequently there are 
suddenly more variables than equations. In order to close the motion equation system in this study, 𝑘 −  turbulence ߝ
modeling will be used. 
 
2. THE OBJECTIVES OF THIS STUDY: 

 To simulate numerically fluid flow in an enclosure using k-epsilon turbulence model 
 To generate isotherms and streamlines for different aspect ratios. 
 To observe the effect of the aspect ratio along hot and cold walls 
 To use the numerical results in making conclusions and making recommendations. 

 

3. LITERATURE REVIEW: 

 Aydin et al. (1999) investigated natural convection in rectangular enclosure heated from one side and cooled 
from the ceiling. 
 Betts & Bokhari (2000) found that the partially conducting roof and floor provided locally unstable thermal 
stratification in the wall jet flows across the diagonal of a tall differentially heated rectangular cavity. 
 Peng & Davidson (2001) studied turbulent natural convection flow in a confined cavity with two differentially 
heated side walls.  
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 Bilgen, E. (2002) studied Laminar and turbulent natural convection in enclosures with partial partitions by a 
numerical method.  
 A three dimensional  rectangular enclosure containing a convectional heater built into one wall and having a 
window in the same wall study was done by Sigey et al. (2004).  
 Sharma et al. (2007) did Conjugate turbulent natural convection and surface radiation in rectangular 
enclosures heated from below and cooled from other walls. 
 Braga, & de Lemos, (2009) did study on Turbulent natural convection in a two-dimensional horizontal 
composite square cavity. 
 Sigey, J. K. (2012) solved equations governing natural convection in a rectangular enclosure.  
 Awuor, K.O. (2013) studied performance of three numerical turbulence models in turbulent Convection Fluid 
Flow in an Enclosure. The non-linear terms in the averaged momentum and energy equations were modeled using the 
k -ԑ , k -ω and k -ω - SST models to close the governing equations. He found that k -ω - SST model performed better 
than both k - ԑ and k -ω models in the whole enclosure. 
 Zhou, W et al. (2015) investigated numerically the natural convective flow and heat transfer in a rectangular 
cavity filled with a heat-generating porous medium 
 Kumar et al. (2016) investigated heat transfer inside a narrow triangular enclosure of aspect ratio 0.3175, 
between hot base plate and inclined cold wall while others wall being isothermal. 
 

4. GOVERNING EQUATIONS: 

The set of governing equations in 2-D rectangular coordinates which are continuity, momentum in X and Y directions 

,energy equations turbulent kinetic energy, 𝑘 and dissipation rate equation, ߝ are:- 𝜕௨𝜕௫ + 𝜕௩𝜕௬ = Ͳ.…………………………………………………………………….……...........…1         𝜕௨𝜕௧ + ݑ 𝜕௨𝜕௫ + ݒ 𝜕௨𝜕௬ = ௫ܨ − 𝜕𝑝𝜕௫ + 𝜇 ቀ𝜕మ௨𝜕௫మ + 𝜕మ௨𝜕௬మቁ………………..……....................................……2 𝜕௩𝜕௧ + ݑ 𝜕௩𝜕௫ + ݒ 𝜕௩𝜕௬ = ௒ܨ − 𝜕𝑝𝜕௬ + 𝜇 ቀ𝜕మ௩𝜕௫మ + 𝜕మ௩𝜕௬మቁ…………………………………..………………3 𝜌𝐶𝑝 ቀ𝜕𝜕௧ + ݑ 𝜕்𝜕௫ + ݒ 𝜕்𝜕௬ቁ = 𝑘 ቀ𝜕మ்𝜕௫మ + 𝜕మ்𝜕௬మቁ + Φ…………..….…………………….……………4 

WhereΦ = μ {ʹ [ቀ∂୳∂୶ቁଶ + ቀ∂୴∂୷ቁଶ] + ቀ∂୴∂୶+ ∂୳∂୷ቁଶ} 𝜕𝜕௧ ሺ𝜌𝑘ሻ + ݑ̅ 𝜕𝜕௫೔ ሺ𝜌𝑘𝜇௜ሻ = 𝜕𝜕௫ೕ [ቀ𝜇 + ௏𝑇𝜎ೖቁ 𝜕௞𝜕௫ೕ] + ௄ܩ + ௕ܩ − 𝜌ε − Ym + Sk………………....…….5 

𝜕𝜕௧ ሺ𝜌ߝሻ + ݑ̅ 𝜕𝜕௫೔ ሺ𝜌ߝ𝜇௜ሻ = 𝜕𝜕௫ೕ [ቀ𝜇 + ௏𝑇𝜎εቁ 𝜕ε𝜕௫ೕ] + 𝐶ଵε ε௄ ሺܩ௄ + 𝐶ଷεܩ௕ሻ − 𝐶ଶε εమk + Sε………………6 

Non – dimensionalizing the governing equations makes the equations simpler and highlights which terms are the most 
important. The main objective behind non – dimensionalization is to reduce the number of parameters. The set of 
Equations 1,2,3 and 4 should be solved to obtain the unknowns u, v, p and T. By applying Boussinesq approximation 
and then introducing dimensionless parameters U, V, θ,𝜏 ,P, X and Y; ܺ = ௫௅,                ܻ = ௬௅, ܷ = ௨௅𝛼𝑓,ܸ = ௩௅𝛼𝑓 , 𝜃𝑓 = ்𝑓− 𝑐்்ℎ− 𝑐் 
., 𝜏 = 𝛼𝑓௧௅మ , p=

௅మ𝑝𝜌𝛼𝑓మ……………………………………………………….…………………..…….7 

 The set of equation in dimensionless form can be written as: 𝜕௎𝜕௑ + 𝜕௏𝜕௒ = Ͳ………………………………………………………………………………………8 𝜕௎𝜕𝜏 + ܷ 𝜕௎𝜕௑ + ܸ 𝜕௎𝜕௒ = − 𝜕𝑃𝜕௑ + 𝑃𝑟 ቀ𝜕మ௎𝜕௑మ + 𝜕మ௎𝜕௒మቁ…..…………………………………………….……9 

 𝜕௏𝜕𝜏 + ܷ 𝜕௏𝜕௑ + ܸ 𝜕௏𝜕௒ = − 𝜕𝑃𝜕௒ + 𝑃𝑟 ቀ𝜕మ௏𝜕௑మ + 𝜕మ௏𝜕௒మቁ + ܴ𝑎. 𝑃𝑟. 𝜃𝑓………………………………………10 ቀ𝜕𝜃𝑓𝜕𝜏 + ܷ 𝜕𝜃𝑓𝜕௑ + ܸ 𝜕𝜃𝑓𝜕௒ ቁ = 𝑘 ቀ𝜕మ𝜃𝑓𝜕௑మ + 𝜕మ𝜃𝑓𝜕௒మ ቁ +Φ………………………………………….………11 

where Ra and Pr represents, Rayleigh and Prantdl numbers respectively; and is dimensionless temperature of fluid. 
By employing the dimensionless vorticity and dimensionless stream function parameters, the dimensionless form of 
the governing equations is obtained where the pressure term in the momentum equation is eliminated. With the 



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD                ISSN – 2455-0620     Volume - 3,  Issue - 7,  July - 2017 

 

Available online on – WWW.IJIRMF.COM Page 308 

application of vorticity-streamfunction approach, the following equations are obtained to find the unknown velocities 
and the temperature values; 𝜕𝛺𝜕𝜏 + 𝜕௎𝛺𝜕௑ + 𝜕௏𝛺𝜕௒ = 𝑃𝑟 ቀ𝜕మ𝛺𝜕௑మ + 𝜕మ𝛺𝜕௒మቁ + ܴ𝑎𝑃𝑟 𝜕𝜃𝑓𝜕௑ …………..………………………………….…12 𝜕మ𝜓𝜕௑మ + 𝜕మ𝜓𝜕௒మ = −𝛺……………………………….………………………………………….……13 𝜕𝜃𝑓𝜕𝜏 + 𝜕௎𝜃𝑓𝜕௑ + 𝜕௏𝜃𝑓𝜕௒ = 𝜕మ𝜃𝑓𝜕௑మ + 𝜕మ𝜃𝑓𝜕௒మ ……………………………………………….…..……….…14 

Where ܴ𝑎 = ݃𝛽ሺ ℎܶ − ௖ܶሻ𝐿ଷݒ ∝  

5. MATHEMATICAL FORMULATION: 
 Figure 1 shows a schematic diagram of the problem under consideration and the coordinate system. The 
system to be considered is a two – dimensional rectangular cavity of width W and height H, where the two vertical are 
kept at different temperatures, ℎܶ (left wall) and ௖ܶ (right wall), ℎܶ  > ௖ܶ. Zero heat flow is assumed at the top and 
bottom walls (adiabatic). The walls are rigid and no – slip conditions are imposed at the boundaries.   
 

 

Fig.5.1 

Since the energy equation 14 and the vorticity equation 12 are similar to each other, they can be expressed in the form 

of a single generic equation (Mobedi 1994); 𝜕∅𝜕𝜏 + ܷ 𝜕∅𝜕௑ + ܸ 𝜕∅𝜕௒ = 𝐶 ቀ𝜕మ∅𝜕௑మ + 𝜕మ∅𝜕௒మቁ + ݂…………………………………….………………....…15 

Where  ∅ is a generic dependent variable representing Ω. 

 

6. FINITE DIFFERENCE SOLUTION METHOD FOR PARABOLIC DIFFERENTIAL EQUATIONS:  
Equation 15 can be reduced to the following form; 𝜕∅𝜕𝜏 = ∅௑ଶߜ + ∅௒ଶߜ + ݂ …………………………………………………………………..…..…...16 

In equation 16, ߜ௑ଶ∅ 𝑎𝑛𝑑 ߜ௒ଶ∅ are ߜ௑ଶ∅ = 𝐶 𝜕మ∅𝜕௑మ −ܷ 𝜕∅𝜕௑……………………………………………………………..……………....17 ߜ௒ଶ∅ = 𝐶 𝜕మ∅𝜕௒మ − ܸ 𝜕∅𝜕௒…..…………………………………………………..……………………..18 

Term ߜ௑ଶ∅ and ߜ௒ଶ∅ refer to diffusion and convection transport in X and Y directions, respectively. For this reason, 
they can be called as diffusion-convection terms. The parabolic partial differential equations can be solved by various 
finite difference methods. Those methods are generally classified into three types, namely, explicit, implicit and ADI 
(Alternating Direction Implicit) methods (Thiault 1985).  
Application of the ADI method on Equation 16 for any node (i, j) in Cartesian coordinates when a simple forward 
difference for the time term is used can be written in two steps as; ∅೔.ೕ𝑛+భ/మ−∅೔,ೕ𝑛∆𝜏/ଶ = ௑ଶ∅௜,௝𝑛+ଵ/ଶߜ + ௒ଶ∅௜,௝𝑛ߜ + ௜݂,௝𝑛…………………………………………..…….……….19 ∅೔.ೕ𝑛+భ−∅೔,ೕ𝑛+భ/మ∆𝜏/ଶ = ௑ଶ∅௜,௝𝑛+ଵ/ଶߜ + ௒ଶ∅௜,௝𝑛+ଵߜ + ௜݂,௝𝑛+ଵ/ଶ..……….………………………………………...20 

Where the Equation 19 is implicit for x-direction and explicit for y-direction and the Equation 20 is implicit for y-
direction and explicit for x-direction. 
Equation 16 can be arranged as;  

Y 

Z 

X 
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ቀͳ − ∆𝜏ଶ ௑ଶቁ∅௜,௝𝑛+ଵ/ଶߜ = ቀͳ + ∆𝜏ଶ ௒ଶቁ∅௜,௝𝑛ߜ + ∆𝜏ଶ ௜݂,௝𝑛……………………………………………..….21 

Similarly, equation 20 can be arranged as ቀͳ − ∆𝜏ଶ ௒ଶቁ∅௜,௝𝑛+ଵߜ = ቀͳ + ∆𝜏ଶ ௑ଶቁ∅௜,௝𝑛ߜ + ∆𝜏ଶ ௜݂,௝𝑛+ଵ/ଶ…..……………………………………….….22 

 As it can be seen, the major advantage of ADI method with respect to a fully implicit method is that the solution of 
the parabolic differential equation for a time step can be obtained after two steps. 
 

7. RESULTS AND DISCUSSIONS: 
 The results presented here were obtained by solving the governing equations numerically using Finite 
Difference Method and together with the boundary conditions give the numerical solutions for variables in  𝜿 − 𝝐 
model.  
 In this study, height is kept constant at 2m while changing the distance between two isothermal walls i.e. the 
left and right walls which in this case is referred as the aspect ratio. The aspect ratio is varied at a sequence of even 
numbers (2,4,6, and 8) and results of isotherms, stream lines and contours of velocity magnitudes are recorded at z = 
0.5. 
 

Isotherms  
 Isotherm is a line of equal or constant temperature or is a curve on a graph that connects points of equal 
temperature. 
In figure 7.1a, the highest temperature is 130 K, In 7.1 b, the highest temperature is 75.8 K, 7.1c, the highest 
temperature is 26.7 K and in 16 d, the highest temperature is 13.1K. The high temperatures are evident on the left side 
wall. In all cases two circular motion in different directions (one in clockwise and the other one in anticlockwise 
direction).There is rises up of hot less dense particles which losses its heat with distance as shown by change in color. 
In between the two isothermal walls there is mixing of air particles which is a region of thermal equilibrium and is a 
relatively cold region. In 7.1 c and 7.1 d, temperature uniformity is achieved. In conclusion, it is evident that highest 
temperature decreases with increase in aspect ratio.  

 

Figure 7.1a isotherm of aspect ratio 2 

 
Figure 7.1b isotherm of aspect ratio 4 

 
Figure 7.1c isotherm of aspect ratio 6 
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Figure 7.1d isotherm of aspect ratio 8 

 
7.2 Contours of Velocity Magnitudes 

In 7.2a the highest velocity of air particles is 0.5m/s, in 6.2b the highest velocity is 0.285 m/s, in 7.2c the 
highest velocity is 0.246 m/s and in 7.2d the highest velocity is 0.204 m/s. In 6.2a, the highest speed is at the middle – 
at the mixing region. Vortices are more in 7.2a which become parallel as aspect ratio increases. In 7.2d are parallel 
than any other set up in this study and at this point is evident that as aspect ratio increases the flow becomes less 
turbulent. 

Figure 7.2a Contours of velocity magnitude (m/s) of aspect ratio 2 

 
 

Figure 7.2b Contours of velocity magnitude (m/s) of aspect ratio 4 
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Figure 7.2c Contours of velocity magnitude (m/s) of aspect ratio 6 

 
Figure 7.2d Contours of velocity magnitude (m/s) of aspect ratio 8 

 
7.3 Streamline Distribution 

A streamline is an imaginary line in a fluid such that the tangent at any point indicates the direction of the 
velocity of a particle of the fluid at that point.  

The highest value indicated here is that of aspect ratio 2 which is 0.293Kg/s followed by that of aspect ratio 4 
which is 0.254 Kg/s. This value reduces as aspect ratio increases as depicted by that of aspect ratio 6 which is 0.238 
Kg/s and the lowest which is 0.178 Kg/s as shown by that of aspect ratio 8.  In 7.3a, the vortices are big in size at the 
two centers and they assume a circular path which deforms as distance increases from their centers. In 7.3b, radius of 
centre circle reduces which as well decreases as the aspect ratio increases to 8 as seen in 7.3c. In 6.3d the two centre 
cell deforms and takes an oval shape. The vortices become parallel as aspect ratio increases. 

 

Figure 7.3a Contours of streamlines (kg/s) of aspect ratio 2 
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Figure 7.3bContours of streamlines (kg/s) of aspect ratio 4 

 
 

Figure 7.3c Contours of streamlines (kg/s) of aspect ratio 6 

 

Figure 7.3d Contours of streamlines (kg/s) of aspect ratio 8 

 

7. CONCLUSION: 
The objective of the study was to generate isotherms and streamlines for different aspect ratios and observe 

the effect of the aspect ratio along hot and cold walls in a enclosure. The heat transfer was by convection. The 
solutions were obtained for aspect ratio of 2, 4, 6, and 8. The geometry considered is a rectangular enclosure in form 
of a room with left wall at higher temperature than the right side wall as shown in Fig 1.  

The Boussinesq approximations were used, allowing the conservation equations to be simplified. The 
governing equations with boundary conditions were discretized using a three-point central and forward difference 
approximation.  

The results show that as the aspect ratio increased speed decreased and vortices became more parallel thus 
decreasing turbulence. So, the aspect ratio has a significant effect in fluid flow and temperature field in horizontal 
enclosures heated from the side. This helps in keeping of some items at the stated temperature as well as in brine 
exclusion 
 

8. RECOMMENDATIONS: 
Further investigations are recommended for 

 Enclosures with a three-dimensional configuration. 
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 The effect of the changing Rayleigh number and aspect ratio. 
 Same configuration but using 𝑘 − 𝜔 ܵܵܶ model, RNG 𝑘 − model and Realizable 𝑘 ߝ −  ߝ
 Varying the characteristics of the fluid contained in the enclosure. 
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