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1. INTRODUCTION: 

Algorithms have a important role in computer 
science. As we all know that computer is based on 
instructions and an algorithm is simply a sequence of 
instruction that we people use to perform any task on 
computer. Therefore informally an algorithm is a well 
defined procedure that is used to solve a computational 
problem. There are different types of algorithms that 
depends upon the problems. Sorting algorithms are one 
of the such category. Sorting algorithms are used to 
arrange the data into a logical sequence. Sorting 
algorithms mostly work on an array or a list of 
elements that can be alphabets or numerals. There are 
many algorithms available for sorting some of that 
have quite simple working while some have 
complicated working. 

 
2. STABLE SORTING METHOD: 

Sorting algorithm is said to be stable if identical 
elements should occupy relative order as like in 
unsorted order. 

 
 
 
    Output [Stable 

sorting] 
 
 
 
 
    Output [Unstable 

sorting] 
 Stable sorting method is preferred if element size 

is too large(DB record sorting). 
 Merge sort is stable sorting method. 
 

3. INPLACE SORTING METHOD: 

 
 
 
 
 
 
 
      Temp 
 

Merge sort  Non-Inplace sorting 
If elements exchanged in same array (input array) 

then sorting method is inplace. 

I. MERGE SORT 

 
 
 

Divide 
 
 
 
 
 
 Sort    Sort 
 
 
 
 
  Single sorted list 
 
Algorithm: Merge sort (low, high) 
 { 

 //a [low……..high], array of n elements 
If(low<high) 

 { 
 mid=(low+high)/2 

 n/2[Merge sort(low…mid) 
 n/2[Merge sort(mid+1….high)] 
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 0/n[Merge(low, mid, high)]    }} 
 

1 2        3        4     5 6 7 8     9 
2 4 6 7 8 3 5 6 6 

   (a) 
 

1 2        3        4     5 6 7 8      9 
2 3 4 5 6 6 6 7 8 

   (b) 
  Auxiliary array 
Algorithm merge(low, mid, high) 
// To merge two sorted list a[low, mid] &a[mid+1, 

high] into one single sorted list. 
h=low, j= mid+1, i=low; 
while(h<=mid && j<=high) 
if(a[h]<=a[j]) 
{ 
b[i]=a[h]; 
h=h+1; 
} 
else 
{ 
b[i]= a[j]; 
j=j+1; 
} 
i=i+1; 
} 
If(h>mid) 
For(k=j;k<=high;k++) 
{ 
b[i]=a[k]; 
i=i++; 
} 
else 
for(k=h;k<=mid;k++) 
{ 
b[i]=a[k]; 
i=i+1; 
} 
for(i=low;i<=high;i++) 
{ 
a[i]=b[i]; 
}} 

1 2 3  4   5   6    7 
6 3 2 7 9 3 6 

 
T(n/2)  (1)  

 T(n/2) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (n) 
 

2 3 3 6 6 7 9 
 

In this algo while loop can run max(n-1) times & 
min n/2 times. 

 
Time Complexity: 

  
 T(n)=      2T(n/2) + CN, n>1 

 
  a= (1), n=1 
 
 T(n)= (nlog2n) in all cases. 
 

Depth of Recursion: 

 
(log2n) in all cases. 

Space complexity[exact I/p space] 
Auxiliary array b[]= [n] 
Stack space= (log n) 

[n] space complexity. 

II. QUICK SORT 

 
Unstable sorting algorithm & Inplace sorting 

algorithm. 
Mainly used in real time. Tony Goore discovered 
Quick sort. 
      1      n 
 

   a 
 
Pivot element 
Or partition element 
   Partition algo[a(1….n)] 

  
   

  1  j  n 
a[1……..j-1]<=x<=a[j+1…..n] 

Partially divide and conquer. 
 
Algorithm: Quick sort(p,q) 
{ 
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//a[p……q] array of n elements 
If(p<q) 
{ 
j=partition(a,p,q) 
Quicksort(a,p,j-1) 
Quicksort(a,j+1,q) 
}} 
 

1. Stop increment of i until a[i] > x 
2. Stop decrement of j until a[j] < x 
3. If i<j swap(a[i], a[j]) 
4. Repeat 1, 2, 3 until i>=j 
5. Swap(a[j], a[p]) 

Return j; 
 
  Partition element 
Algorithm: Partition(a, p, q) 
{ 
// a[p……q] array and a[q+1]=+∞ 
I = p, j = q+1 
V=a[p] //first element is pivot 
Do 
{ 
Do 
{ 
I=i+1; 
} 
While(a[i]<v) 
Do 
{ 
J=j-1; 
} 
While(a[j]>v) 
If(i<j) swap (a[i], a[j]) 
} 
While(i<j) 
Swap(a[j], a[p]) 
Return(j) 
} 
 
15 13 12 15 19 20 18 25 20 
 
Quick(1,3)   Quick(5,9) 
 
+∞ is used to avoid array out and access if partition 
element in max element in array. 
 
Time Complexity for Partition Algorithm: 
 
Case 1:   i [1+n] comparisons 
 
         +∞ 
Case 2: 
 
n n-1 n-2 …. …… …… N 

[n+1] comparisons 
 
Case 3: 

 
 
     +∞ 
 

n/2+(n/2+1) = n+1 comparisons 
 
Time complexity of partition algo= [n] 
 

Time Complexity of Quick sort: 
 
Worst case time complexity: 
 
Quick sort behaves worst case of input array is already 
in sorted order. 
 
1          2        3      4  5 6        7 
2 4 6 7 10 11 12 

  
Quicksort(1,7) 
{ 
Y=partition 
Q.S.(1,0)0 elements 
Q.S.(2,7)(n-1) elements | T(n-1) 
} 
 
     T(n) 
 
 
   (n) 
 
    0 
 
 
 
            0 
 
     Depth of 
          Recursion= (n) 
          0 
 
 
 
 
       0 
    
 

T(n)=     T(n-1)+ cn, n>1 
     a,  n<=1 
= n+n-1+…………+2+1 
= (n²)  [Time complexity of Quick sort in 

 worst case] 
 
Quick sort behaves we if input list divided as ‘c’ and 

‘n-c’ elements in every partition. 
 
b) Best case of Time complexity: 
  

1 2 3...................................n 
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QS(p,q) 
{ 
j=partition(a, p, q)  cn 
QS(p, j-1)  n/2 elements T(n/2) 
QS(j+1, Q)  n/2 elements T(n/2) 
} 
T(n)= 2T(n/2)+cn, n>=2 

 a= (1), n<=1 
 
Depth of recursion= (log2n) 
T.C.= (nlogn) 
Best case 
 
c) Average case of Time complexity: 
 
Case 1: BC, WC, BC, WC ………. 
 

 
 
 
 
 
 
 
 
 
0           0 
 

 
Time complexity= (nlog n) 
 

Case 2: n/5 elements and 4n/5 elements in two lists 
after partition of n element. 

T(n)=     T(n/2)+T(4n/5)+cn,  n>1 
     A   n<=1 
 
 
 
 
 
 
 
 
 
Log5n 
 
 
 
 
 
 
 
 
 
 
      n 
      
T(n)= (nlog5/4n)= (nlogn) 

Average time complexity of Quick sort recurrence 
relation 

T(n)=     T(ἀ.n)+T((1-ἀ)n)+cn, n>1 
     A,   n<=1 

0<ἀ<1 
T(n)=  (nlogn) 
T(n)=T(n/100)+T(99n/100)+cn 
       =  (n log99/100 n)=  (nlog n) 

Quick sort is unstable sorting algorithm but inplace 
algo. 

Space complexity of Quick sort(exclusive i/p space) 
BC   
AC  Stack space= (logn)   
WC } Stack space= (n) 

If all elements are identical in input array then Time 
complexity of Quick sort is (nlog n).  
  

4. CONCLUSION: 

 
Name Quick Sort Merge sort 

Best case O(nlog n) O(nlog n) 

Average case O(nlog n) O(nlog n) 

Worst case O(n2) O(nlog n) 

Stable No Yes 

Remark In Place Sorting Requires extra 
memory 

This term paper deliberate the comparison of two 
sorting algorithms. And it concludes that Merge sort 
performs better than the Quick sort but takes more 
memory at the time of sorting. 
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