
INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 3, Issue - 10, Oct – 2017

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 5.60 Publication Date: 30/10/2017

Available online on – WWW.IJIRMF.COM Page 66

A Comparative Analysis of Sorting Algorithms on Quick Sort and Merge Sort

Harsh Srivastava
1
, Jyotiraditya Tripathi

2
 , Bhawana Gautam

3

1,2, 3 M.Tech. Student, Centre for Computer Science & Technology (Cyber Security)
Central University of Punjab, Bathinda (Punjab).

Email – 1 Harshmagic20@gmail.com 2 j.adityatripathi@rediffmail.com 3bg96335@gmail.com

1. INTRODUCTION:

Algorithms have a important role in computer
science. As we all know that computer is based on
instructions and an algorithm is simply a sequence of
instruction that we people use to perform any task on
computer. Therefore informally an algorithm is a well
defined procedure that is used to solve a computational
problem. There are different types of algorithms that
depends upon the problems. Sorting algorithms are one
of the such category. Sorting algorithms are used to
arrange the data into a logical sequence. Sorting
algorithms mostly work on an array or a list of
elements that can be alphabets or numerals. There are
many algorithms available for sorting some of that
have quite simple working while some have
complicated working.

2. STABLE SORTING METHOD:

Sorting algorithm is said to be stable if identical
elements should occupy relative order as like in
unsorted order.

 Output [Stable

sorting]

 Output [Unstable

sorting]
 Stable sorting method is preferred if element size

is too large(DB record sorting).
 Merge sort is stable sorting method.

3. INPLACE SORTING METHOD:

 Temp

Merge sort  Non-Inplace sorting
If elements exchanged in same array (input array)

then sorting method is inplace.

I. MERGE SORT

Divide

 Sort Sort

 Single sorted list

Algorithm: Merge sort (low, high)
 {

 //a [low……..high], array of n elements
If(low<high)

 {
 mid=(low+high)/2

 n/2[Merge sort(low…mid)
 n/2[Merge sort(mid+1….high)]

Abstract: Most sensible applications in computer programming would require the output to be organized in a

sequential order. A plenty of sorting algorithms has been developed to reinforce the performance in the terms of

computational complexity, memory and alternative factors. This paper is an attempt to check the performance of

two sorting algorithm: Quick Sort and Merge Sort, with the aim of comparing their speed when sorting an

integer and string arrays. Analysis of these two sorting algorithm was also carried out. The finding shows that

Quick sort performs better than Merge sort. The study also indicates that the integer array have faster CPU time

than string arrays although both have the upper bound running time O(n²).

Key Words: Sorting, Stable Sorting Method, Inplace Sorting Method, Quick sort, Merge sort, Time Complexity

and Space Complexity.

2 1 2a 2b 3 2c 0

0 1 2a 2b 2c 3

0 1 2b 2c 2a 3

 N

N

N

 N

 N/2 N/2

 Conquer

mailto:Harshmagic20@gmail.com
mailto:j.adityatripathi@rediffmail.com
mailto:bg96335@gmail.com

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 3, Issue - 10, Oct – 2017

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 5.60 Publication Date: 30/10/2017

Available online on – WWW.IJIRMF.COM Page 67

 0/n[Merge(low, mid, high)] }}

1 2 3 4 5 6 7 8 9
2 4 6 7 8 3 5 6 6

 (a)

1 2 3 4 5 6 7 8 9
2 3 4 5 6 6 6 7 8

 (b)
 Auxiliary array
Algorithm merge(low, mid, high)
// To merge two sorted list a[low, mid] &a[mid+1,

high] into one single sorted list.
h=low, j= mid+1, i=low;
while(h<=mid && j<=high)
if(a[h]<=a[j])
{
b[i]=a[h];
h=h+1;
}
else
{
b[i]= a[j];
j=j+1;
}
i=i+1;
}
If(h>mid)
For(k=j;k<=high;k++)
{
b[i]=a[k];
i=i++;
}
else
for(k=h;k<=mid;k++)
{
b[i]=a[k];
i=i+1;
}
for(i=low;i<=high;i++)
{
a[i]=b[i];
}}

1 2 3 4 5 6 7
6 3 2 7 9 3 6

T(n/2) (1)

 T(n/2)

 (n)

2 3 3 6 6 7 9

In this algo while loop can run max(n-1) times &
min n/2 times.

Time Complexity:

 T(n)= 2T(n/2) + CN, n>1

 a= (1), n=1

 T(n)= (nlog2n) in all cases.

Depth of Recursion:

(log2n) in all cases.

Space complexity[exact I/p space]
Auxiliary array b[]= [n]
Stack space= (log n)

[n] space complexity.

II. QUICK SORT

Unstable sorting algorithm & Inplace sorting

algorithm.
Mainly used in real time. Tony Goore discovered
Quick sort.
 1 n

 a

Pivot element
Or partition element
 Partition algo[a(1….n)]

 1 j n
a[1……..j-1]<=x<=a[j+1…..n]

Partially divide and conquer.

Algorithm: Quick sort(p,q)
{

6 3 2 7 9 3 6

6 3 2 7 9 3 6

6 3 2 7 9 3
6 3 2 7 9 3 6

6 3 2 7 9 3

6 3 2 7 3 9

2 3 6 7 3 6 9

x

 x

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 3, Issue - 10, Oct – 2017

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 5.60 Publication Date: 30/10/2017

Available online on – WWW.IJIRMF.COM Page 68

//a[p……q] array of n elements
If(p<q)
{
j=partition(a,p,q)
Quicksort(a,p,j-1)
Quicksort(a,j+1,q)
}}

1. Stop increment of i until a[i] > x
2. Stop decrement of j until a[j] < x
3. If i<j swap(a[i], a[j])
4. Repeat 1, 2, 3 until i>=j
5. Swap(a[j], a[p])

Return j;

 Partition element
Algorithm: Partition(a, p, q)
{
// a[p……q] array and a[q+1]=+∞
I = p, j = q+1
V=a[p] //first element is pivot
Do
{
Do
{
I=i+1;
}
While(a[i]<v)
Do
{
J=j-1;
}
While(a[j]>v)
If(i<j) swap (a[i], a[j])
}
While(i<j)
Swap(a[j], a[p])
Return(j)
}

15 13 12 15 19 20 18 25 20

Quick(1,3) Quick(5,9)

+∞ is used to avoid array out and access if partition
element in max element in array.

Time Complexity for Partition Algorithm:

Case 1: i [1+n] comparisons

 +∞
Case 2:

n n-1 n-2 …. …… …… N

[n+1] comparisons

Case 3:

 +∞

n/2+(n/2+1) = n+1 comparisons

Time complexity of partition algo= [n]

Time Complexity of Quick sort:

Worst case time complexity:

Quick sort behaves worst case of input array is already
in sorted order.

1 2 3 4 5 6 7
2 4 6 7 10 11 12

Quicksort(1,7)
{
Y=partition
Q.S.(1,0)0 elements
Q.S.(2,7)(n-1) elements | T(n-1)
}

 T(n)

 (n)

 0

 0

 Depth of
 Recursion= (n)
 0

 0

T(n)= T(n-1)+ cn, n>1
 a, n<=1
= n+n-1+…………+2+1
= (n²) [Time complexity of Quick sort in

 worst case]

Quick sort behaves we if input list divided as ‘c’ and

‘n-c’ elements in every partition.

b) Best case of Time complexity:

1 2 3...................................n

Unsorted list
u

 n

n-1

n-2

2

1

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 3, Issue - 10, Oct – 2017

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 5.60 Publication Date: 30/10/2017

Available online on – WWW.IJIRMF.COM Page 69

QS(p,q)
{
j=partition(a, p, q)  cn
QS(p, j-1)  n/2 elements T(n/2)
QS(j+1, Q)  n/2 elements T(n/2)
}
T(n)= 2T(n/2)+cn, n>=2

 a= (1), n<=1

Depth of recursion= (log2n)
T.C.= (nlogn)
Best case

c) Average case of Time complexity:

Case 1: BC, WC, BC, WC ……….

0 0

Time complexity= (nlog n)

Case 2: n/5 elements and 4n/5 elements in two lists
after partition of n element.

T(n)= T(n/2)+T(4n/5)+cn, n>1
 A n<=1

Log5n

 n

T(n)= (nlog5/4n)= (nlogn)

Average time complexity of Quick sort recurrence
relation

T(n)= T(ἀ.n)+T((1-ἀ)n)+cn, n>1
 A, n<=1

0<ἀ<1
T(n)= (nlogn)
T(n)=T(n/100)+T(99n/100)+cn
 = (n log99/100 n)= (nlog n)

Quick sort is unstable sorting algorithm but inplace
algo.

Space complexity of Quick sort(exclusive i/p space)
BC
AC Stack space= (logn)
WC } Stack space= (n)

If all elements are identical in input array then Time
complexity of Quick sort is (nlog n).

4. CONCLUSION:

Name Quick Sort Merge sort

Best case O(nlog n) O(nlog n)

Average case O(nlog n) O(nlog n)

Worst case O(n2) O(nlog n)

Stable No Yes

Remark In Place Sorting Requires extra
memory

This term paper deliberate the comparison of two
sorting algorithms. And it concludes that Merge sort
performs better than the Quick sort but takes more
memory at the time of sorting.

REFERENCES:

1. Donald E. Knuth et al. “The Art of Computer
Programming,” Sorting and Searching Edition
2, Vol.3.

2. Cormen et al. “Introduction to Algorithms,”
Edition 3, 31 Jul, 2009.

3. D. Knuth, “The Art of Computer programming
Sorting and Searching”, 2nd edition, Addison-
Wesley, vol. 3, (1998).

4. D. Mishra and D. Garg, “Selection of the best
sorting algorithm”, International Journal of
Intelligent Information Processing, vol. 2, no.
2, (2008) JulyDecember, pp. 363-368.

5. C. A. R. Hoare, Algorithm 64: Quick sort.
Comm. ACM, vol. 4, no. 7 (1961), pp. 321.

 n

 n/2 n/2

n/2-
1

n/2-1

n

n/5 4n/5

n/5 4n/5

n/5
²

4n/5² 4n/5
²

4²n/5
²

n/5³

n/2ʳ

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 3, Issue - 10, Oct – 2017

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 5.60 Publication Date: 30/10/2017

Available online on – WWW.IJIRMF.COM Page 70

6. Ahmed M. Aliyu, Dr. P. B. Zirra, “A
Comparative Analysis of Sorting Algorithms
on Integer and Character Arrays,” The
International Journal Of Engineering And
Science (IJES)., ISSN(e): 2319 – 1813
ISSN(p): 2319 – 1805.

7. E. Horowitz, S. Sahni and S. Rajasekaran,
Computer Algorithms, Galgotia Publications.

8. Horowitz, E., Sahni. S, Fundamentals of
Computer Algorithms, Computer Science
Press, Rockville. Md

9. Laila Khreisat, “Quick Sort: A Historical
Perspective and Empirical Study”, IJCSNS

10. T. H. Coreman, C. E. Leierson, R. L. Rivest
and C. Stein, Introduction to Algorithms, 2nd
edition, MIT Press.

11. John Darlington, Remarks on “A Synthesis of
Several Sorting Algorithms”, Springer Berlin /
Heidelberg, pp 225-227,Volume 13, Number 3
/ March, 1980.

WEB REFERENCES:

http://www.geeksforgeeks.org/iterative-quick-sort
https://en.wikipedia.org/?title=Merge_sort
https://en.wikipedia.org/?title=Quicksort
http://www.geeksforgeeks.org/forums/topic/merge-
sort/

http://www.geeksforgeeks.org/iterative-quick-sort
https://en.wikipedia.org/?title=Merge_sort
https://en.wikipedia.org/?title=Quicksort
http://www.geeksforgeeks.org/forums/topic/merge-sort/
http://www.geeksforgeeks.org/forums/topic/merge-sort/

