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1.  INTRODUCTION: 

 Least Squares is a tool that helps to analyze and adjust the random errors in survey measurements. It computes 

adjusted positions using estimated precisions of observations coordinates to reconcile differences between 

observations and the inverses to their adjusted coordinates. Least Squares also reports the statistics of the adjustments, 

indicating the strength of a computed position. The strength of the computed position enables the determination of the 

confident in the computed position and also allows blunder detection. The method of least squares is a rigorous 

technique that can be applied to the adjustment of horizontal geodetic network to yield the most likely values of the 

survey measurements. 

 Horizontal geodetic network is a group of reference stations whose positions as well as coordinates are determined 

with a very high accuracy. The horizontal geodetic network is classified into three as: first order, second order and 

third order. The classes as well as the orders are determined by the accuracy with which the nets are established. The 

precision and the accuracy of the network are normally determined with least squares adjustment technique. 

 The determination of the precision and accuracy of the horizontal geodetic network using the least squares 

technique has been very difficult to understand by various researchers. Though, there are software that do this 

adjustment but the theory as well as the equations that were used to develop the programs and their applications are 

not quite understood by various users. The difficulty in its application resulted from its matrix nature. The general 

matrix notation of least squares adjustment is simply the sum of the estimate and the matrix of observations equals to 

the residual matrix. Unfortunately, to deduce/obtain each of these matrices has been a problem. Previous studies in 

which least squares adjustment technique was applied never presented the breakdown of how the technique was 

effected in the studies. To determine the precision and accuracy of the adjusted network, residual matrix has to be 

obtained and there must be redundant observations as well as degree of freedom.  

 This paper presents detailed as well as step by step application of observation equation method of least squares 

adjustment technique for determination of the precision and accuracy of horizontal geodetic networks established 

using DGPS. 

1.1 Observation Equation Method of Least Squares Adjustment 

 Equations that relate observed quantities to both observational residuals and independent unknown parameters are 

called observation equations. One equation is written for each observation and for a unique set of unknowns. For a 

unique solution of unknowns, the number of equations must equal the number of unknowns. Usually, there are more 

observations (and hence equations) than unknowns, and this permits determination of the most probable values for the 

unknowns based on the principle of least squares [1]. 

 References [2], [3] explained that, in the observations equation method, the adjusted observations are expressed as 

a function of the adjusted parameter. The functional relationship between adjusted observations and the adjusted 

parameters as given in [4] is: 

  )( aa XFL          (1) 
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Where, aL  = adjusted observations and aX  = adjusted parameters. Equation (1) is linear function and the general 

observation equation model was obtained. 

 To make the matrix expression for performing least squares adjustment, analogy will be made with the systematic 

procedures. The system of observation equations is presented by matrix notation as [5], [6]: 

 LAXV       (2)  

where, A = Design Matrix, X = Vector of Unknowns, L = Calculated Values ( ol ) Minus Observed Values ( bl ), V = 

Residual Matrix. That is, 
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 The determination of the unknown parameters matrix, X requires the normal matrix, N and the matrix of numeric 

terms, t to be deduced. For weighted observations, the weight matrix which is always a square matrix also has to be 

derived. 

According to [7], a system of weighted linear observation equations can be expressed in matrix notation as: 

  WLAWAXA
TT         (3) 

To make X the subject of the formula, both sides of equation (3) will be divided by WAA
T

. Thus,  

  WLAWAAX
TT 1)(         (4) 

If ,NWAA
T   normal matrix and ,tWLA

T   matrix of numeric terms, then equation (4) becomes 

  tNX
1         (5) 

1.2 Weight of Uncorrelated Observation 

The weight, w of an uncorrelated observation as given by [8] is inversely proportional to variance, 
2 . Thus,  

  
2

1


w          (6) 

 The weight matrix of uncorrelated observations is a diagonal matrix such that the off diagonal elements are all zero 

and it is given as 
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1.3 Precision and Accuracy Determination 
 The mean as well as the average precision and accuracy of a group of adjusted observations are respectively 

determined using a posteriori variance and a posteriori standard error. It is to be noted here that variance and standard 

error are respectively measures of precision and accuracy. The formulae for the computation of a posteriori variance 

as given by [9] is 

  
r

WVV
T

o 2̂         (8) 

while that of the a posteriori standard error as given by [10], [6] is   

  
r

WVV
T

o ̂         (9) 

Where, r = n - m = degrees of freedom, n = number of observations and m = number of unknown parameters. 

 The precision and accuracy of the adjusted parameter as well as the adjusted coordinates are obtained from the 

variance covariance matrix. The precision of the adjusted parameters are the variances as well as the elements of the 

principal diagonal of the variance covariance matrix. The off-diagonal elements of the variance covariance matrix are 

the co-variances between particular coordinates. The square root of the variances give the accuracy of the adjusted 

parameters. 

 The variance covariance matrix is determined by multiplying the inverse of the normal matrix with the a posteriori 

variance. Thus, 
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  12ˆ   N
XX o         (10) 

 Trace is another measure of accuracy. It is the sum of the diagonal elements of the variance covariance matrix, 

XX
.  It is usually written as XX

tr or sometimes XX
),tr( that is, 

    nnoXX
Q

2ˆ)tr(          (11)  

 According to [11], trace of the variance covariance matrix can be interpreted as a measure of the overall accuracy 

of the associated vector of random variates.  

 The models for the computation of the variance, 
2

xi  and the standard error, xi  of the adjusted coordinates are 

given by [6] as 

  
nnoxi Q

22 ̂          (12) 

  
nnoxi Q

2̂          (13) 

where, nnQ = principal diagonal element of the inverse of the normal matrix. 

 Error ellipses are usually computed during adjustment of horizontal or three - dimensional network. They allow a 

convenient way for interpretation of the directional station position accuracy. Error ellipses are also used in optimising 

a network. [12] gave the semi-major axis 
2
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x
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2. STEPS TO BE CONSIDERED WHEN DETERMINING THE PRECISION AND ACCURACY 

 OF HORIZONTAL GEODETIC NETWORK USING OBSERVATION EQUATION 

 METHOD OF LEAST SQUARES ADJUSTMENT TECHNIQUE 

 The following are the steps to be followed or considered when determining the precision and accuracy of a 

horizontal geodetic network established with DGPS: 

1. There must be not less than two fixed controls. That is, some of the network points have to be observed from not 

 less than two controls and the data acquired with respect to any of the controls/base station should be  processed 

 separately to obtain the coordinates of the new points. 

2. Having obtained the coordinates of the new points, deduce the normal as well as the observation equations. The 

 number of observation equations must be equal to the number of baseline. 

3. From the deduced observation equations, derive the coefficient as well as the design matrix, A, observation 

 matrix, L, residual matrix, v and matrix of unknown parameters, X. 

4. Also, deduce the weight matrix using (6). For DGPS observation, the variances of the baseline vectors  are obtained 

from the variance covariance matrix of the processed DGPS data. 

5. Having deduced the above stated matrices, compute the unknown parameters using (5). 

6. To determined the estimate as well as the most probable values, the design matrix is used to multiply the 

 computed values of the unknown parameters. 

7. Having determined the estimates, the next step is to evaluate the residuals. The computation of the residual is 

 done by finding the differences between the estimates and the observations using (2). 

8. Since the residuals have been computed, the precision of the adjusted observations is determined using (8). To 

 compute the precision of the adjusted observations, the degree of freedom must be evaluated. 

9. Having determined the precision of the adjusted observations, their mean accuracy is determined using (9). 

 Thus, the square root of the determined precision. 

10. The accuracy of the adjusted network can also be determined using (11). 

11. Having determined the precision and accuracy of the adjusted observations, the next step is to determined the 

 precision and accuracy of the adjusted coordinates using (12) and (13) respectively. 

12. To compute the semi-major axis, semi-minor axis and the orientation of the error ellipse, (14) and (15) are 

 respectively used. 
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2.1 Numerical Application in Horizontal Geodetic Network 
  Fig.1 shows two network stations, A and B observed with respect to two controls, S and T using DGPS. The 

rectangular coordinates of the stations as determined with respect to the control stations and their corresponding 

variances as obtained from the variance covariance matrices of the processed DGPS data are as shown in table 1. The 

rectangular coordinates of control stations S and T are respectively 251374.548mN, 350472.960mE and 

251441.978mN, 354095.611mE. Using least squares technique, determine the most probable coordinates for stations 

A and B, the precision and accuracy of the observations as well as those of the adjusted coordinates. Also, compute 

the error ellipses of the stations positions. 

 

Table 1: Observed Coordinates and their Corresponding Variances 

Base 

Station 

Rover 

Station 
Coordinates (m) 

Variance 

(m) 

Base 

Station 

Rover 

Station 
Coordinates (m) 

Variance 

(m) 

S 

A 
Northing 250852.942 0.0000577 

T 

A 
Northing 250852.949 0.0000465 

Easting 352598.178 0.0000314 Easting 352598.188 0.0000554 

B 
Northing 252127.392 0.0000247 

B 
Northing 252127.398 0.0000338 

Easting 352572.216 0.0000822 Easting 352572.226 0.0000709 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1: Observed Network Points 

Solution 

Table 2: Determination of baseline vector 

STATION 

FROM ∆N (m) ∆E (m) 

COORDINATES 
STATION            

TO NORTHING (m) EASTING   (m) 

      251374.548 350472.960 S 

S -521.606 2125.218 250852.942 

 

352598.178 A 

S 752.844 2099.256 252127.392 352572.216 B 

      251441.978 354095.611 T 

T -589.029 -1497.423 250852.949 352598.188 A 

T 685.420 -1523.385 252127.398 352572.226 B 
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Computation of the unknown parameters, X using (5) 
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Computation of the most probable coordinates for stations A and B 
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Therefore, the most probable coordinates for stations A and B are respectively 250852.946mN, 352598.182mE and 

252127.395mN, 352572.221mE. 

Evaluation of residuals, v using (2) 
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Computation of the precision and accuracy of the adjusted network using (8) and (9) respectively. 

Since there are 4 unknown and 8 observations, the degree of freedom, r is 4. 
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and 0.850m. 

Computation of the accuracy of the adjusted network using (11). Thus, the trace of the variance covariance matrix. 
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Computation of the precision and accuracy of the adjusted coordinates using (12) and (13). 
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Therefore, the precision of northing and easting coordinates of stations A and B are respectively 0000145.0,0000186.0  

and 0000275.0,0000103.0  while their respective accuracy are 00381.0,00431.0  and .00524.0,00321.0  

Computation of error ellipses of the stations positions using (14) and (15) respectively. 

For station A 
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The same procedure was repeated for station B and the following were obtained 
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Therefore, the semi-major axis, semi-minor axis and the orientation of positions A and B are respectively 

.00.00615m,0.00615m,and00.00575m,0.00575m, oo  

It is to be noted here that since the observations are uncorrelated, there is no covariance between stations A and B. 

Thus, the orientations of the error ellipses are zero. 

3. CONCLUSION: 
The determination of horizontal geodetic (DGPS) network precision and accuracy using the least squares 

method which is rigorous enables the reliability as well as the order or class of the network to be determined. The 

advent of computer system which gave rise to the development of software has simplified these rigorous 

computations. But as the theories as well as the equations which were used to develop the programs which the 

software are using are not quite understood by various users, this paper has given the step by step application of this 

rigorous method as well as its numeric application in horizontal geodetic network precision and accuracy 

determination. Considering the enumerated procedures as well as the given numeric example, the theories and the 

equations as well as the processing procedures of the least squares adjustment software have been explained in detail 

for users understanding. 
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