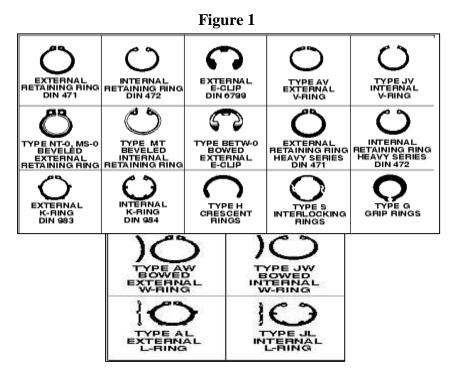
Applications of Integration in Retaining Ring

¹Narmatha.S, ²Nirmaladevi.K, ³Sunrose Shalini.S

¹Assistant Professor, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, India
 ²Assistant Professor, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, India
 ³UG Scholar, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, India

Email – ¹narmathas@skasc.ac.in, ²nirmaladevik@skasc.ac.in, ³sunrosesalini19@gmail.com


Abstract: The main intention of this paper is about the accuracy in the quality of retaining ring. Retaining ring is a fastener which helps to assemble shafts. There are lots of types of retaining rings but in this study we have taken self- locking retaining ring and the simple retaining ring. Here we are applying integration on retaining ring to check its' smoothness and plain surface. First order integration is used to get the arch length of simple retaining ring and surface area of self-locking retaining ring.

Key Words: Retaining ring, Integration, Arc length, Surface area.

1. INTRODUCTION:

A retaining ring is known for fastener which assembles the parts of shafts or holds components using a typical groove. There are many types of retaining rings with specifications and its own standard measurements. Simple retaining rings are also known as housing rings. Self-locking retaining ring is another type of ring which cannot be removed after installation. These retaining rings are easy to assemble rather than any other fastener. It is also low in cost to produce from raw materials. It helps to allocate the shaft parts in it's' place where it is more reliable than traditional ones. Only a groove is required to connect. Self-locking rings are having tolerance to a specified extent.

2. TYPES OF RETAINING RING:

3. DEFINITIONS:

A retaining ring is also known as circlips which is a fastener help to hold or assembles the shaft parts in its' positions. Once it is inserted to assemble shaft it can't be removed easily. It can be said that it is impossible to remove retaining ring from the shaft. In integral the arc length of a curve can be computed. Let us define variables x and y where the function y of x is over the interval between a and b, then y(x) can be written as

$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2 dx}$$

Surface area of a curve can be calculated through first order derivative which is continuous with the interval of

 $a \le x \le b$, where the curve is revolving to form a sphere. Thus, it can be given as $2 \int_0^a 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$

4. APPLICATIONS OF REATAING RING:

- Car parts
- Shafts used in industries
- Valve- parts
- Turbines
- Motors
- Pistons

5. STANDARD RING MEASUREMENTS:

PART	BORE DAMETER B			RING											APPROX	Tomas	PLER			
				THOMESS		FREE DAMETER		T. Contraction					DAMETER		WIDTH		T	WE.LB/	LOAD	No.
	Frac. With	Dec. anch	mm.	inches	Tol. inches	Dinches	Tol. inches	C	Ct	(max)	p.	(min)	G	Tol. inches	Winches	Tol. inches	n (min)	1000 POS.	(1.843)	
N1300-268	1.00	2.677	68	.093		2.980	in the second	2.05	2.21	.268	.236	.108	2.837		.103		.240	35.0	35400	
N1300-268	211/16	2.688	-	.093		2.980	+.040	2.06	2.22	.268	.236	.108	2.848		.103		.240	35.0	35400	
V1300-275	2%	2,750	-	.090		3.050	- 030	2.12	2.28	.284	.234	.108	2.914		.103		246	35.5	36100	
V1300-281	213/16	2.812	-	.093		3.121		2.18	2.34	.284	.230	.108	2.980		.103		.252	36.0	36900	
V1300-281	12-	2,835	72	.093		3.121		2.21	2.38	.284	.230	.108	3.005		.103		252	36.0	36950	
1300-287	27/8	2.875	-	.093		3.191		2.22	2.39	.284	.240	.108	3.051		.103		.264	41.0	37800	
V1300-300	-	2.953	75	.093		3.325		2.30	2.48	.284	.250	.108	3.135		.103		273	42.5	39500	Std.
N1300-300	.3	3.000	-	.093		3.325		2.35	2.53	.284	.250	.108	3.182		.103		.273	42.5	39500	
N1300-306	3016	3.062	-	.109	-	3.418	-	2.41	2.59	.299	.254	.123	3.248		.120		279	53.0	47100	
N1300-312	31/8	3.125	-	.109		3.488		2.47	2.66	.290	.260	.123	3.315		.120		.285	56.0	48000	
N1300-315	-	3.150	00	.109		3.525		2.49	2.68	.299	.260	.123	3.341		.120		.288	57.0	48600	
N1300-315	36:32	3.156	-	.109		3.523		2.50	2.69	.299	.260	.123	3.348		.120		.268	57.0	48600	
N1300-325	314	3,250	-	.109		3.623		2.54	2.73	.290	269	.123	3,445		.120	+.005	294	60.0	50000	
N1300-334	311/10	3.346	-	.109		3.734	2.055	2.63	2.83	.323	.276	.123	3.546		.120	000	.300	65.0	51600	
N1300-347	314:02	3.469	-	.109		3.857	1.000	2.76	2.96	.350	.294	.123	3.675	±.006	.120		.309	69.0	53400	
N1300-350	31/2	3.500	-	.109	±.003	3.890		2.79	3.00	.350	.294	.123	3.710	- 5070.0	.120		.315	71.0	53900	
N1300-354	-	3.543	90	.100		3.936		2.83	3.04	.950	.292	.123	3.755		.120		.321	72.0	54600	
N1300-354	39/16	3.562	-	.109		3.936		2.85	3.06	.350	.292	.123	3.776		.120		.321	72.0	54650	
¥1300-362	35m	3.625		.109		4.024		2.91	3.12	.350	.305	.123	3.841		.120		.324	73.0	55900	
N1300-375	-	3,740	95	.109		4.157		3.02	3.24	.350	.309	.123	3.964		.120		.336	78.0	57700	
N1300-375	3%	3.750	-	.109		4.157		3.03	3.25	.350	.309	.123	3.974		.120		.336	78.0	57700	
N1300-387	37m	3.875	-	.109		4.291		3.11	3.34	.350	.312	.123	4.107		.120		.348	87.0	59600	
E66-0061V	311/16	3.938	-	109		4.358		3.17	3.40	.350	.319	.123	4.174		.120		.354	88.0	60700	
V1300-400	4	4.000	-	.109		4.424		3.23	3.47	.378	.330	.123	4.240		.120		.360	93.0	61700	
V1300-412	418	4.125	-	.109		4.558		3.36	3.60	.378	.330	.123	4.365		.120		360	97.0	63600	
N1300-425	41/4	4.250	-	.109		4.691		3.48	3.72	.378	.335	.123	4.490		.120		.360	101.0	65500	

Available online on – WWW.IJIRMF.COM

PROBLEM (1):

Find the arc length of retaining ring which has the diameter 4 inch using integration.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620

Given: <u>Diameter</u> (d): 4 inches = 10.16 cm <u>Radius (a)</u>: 2 inches = 5.08cm We know that: The Arc length $r = a\theta$ Therefore, We take $f(x) = a \cos\left(\frac{x}{a}\right)$

On differentiating we get,

 $f'(x) = -\sin\left(\frac{x}{a}\right)$

We know that:

Arc Length (L) = $\int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$ From the figure 3 we get,

$$0 1 7\pi$$

a =0; b = $\frac{1}{6}$

Substituting f'(x), a, b in the arc length formula we get,

$$L = \int_0^{\frac{7\pi}{6}} \sqrt{1 - \sin^2\left(\frac{x}{a}\right)} dx$$

We know that,

$$\cos^{2}\theta + \sin^{2}\theta =$$

$$L = \int_{0}^{\frac{7\pi}{6}} \sqrt{\cos^{2}\left(\frac{x}{a}\right)} dx$$

$$L = a \sin \left(\frac{\frac{7\pi}{6}}{a}\right)$$

We know that,

a= 5.08cm

Therefore,

1

N1300-433	-	4.331	110	.109		4.756	±.065	3.50	3.74	.413	.338	.151	4.571		.120		.300	105.0	66600	
N1300-450	410	4.500	-	.109		4.940		3.66	3.90	.413	.351	.151	4,740		.120		.360	111.0	69300	
N1300-462	4%	4.625	-	.109		5.076		3.79	4.03	.413	.350	.151	4.865		.120		360	117.0	71300	-
N1300-475	-	4.724	120	.109		5.213		3.88	4.12	.413	.358	.151	4.900		.120		.366	124.0	73200	
N1300-475	4%	4.750	÷	.109		5.213		3.90	4.14	.413	.358	.151	4.995		.120		.366	124.0	73200	
N1300-500	5	5.000	127	.109		5.485		4.08	4.34	.445	.385	.151	5.260		.120		.405	136.0	77000	
N1300-525	5%	5.250		.125	-	5.770		4.01	4.58	.465	.408	.151	5.520		.139	-	.405	174.0	92700	1000
N1300-537	5 ³ m	5.375	-	.125		5.910		4.41	4.68	.465	.408	.151	5.650		.139		.405	179.0	94900	Major
N1300-550	510	5.500	-	.125	2.004	6.066		4.53	4.80	.465	.408	.151	5.770	±.007	.139	+.005	.405	183.0	97200	77
N1300-575	534	5.750	146	.125		6.336		4.78	5.05	.465	408	.151	6.020		.139	000	.405	192.0	101600	
N1300-600	6	6.000	100000	.126		6.620		5.03	5.30	.465	.416	151	6.270		.139	00040722	.405	201.0	105900	1
N1300-625	614	6.250	-	.156	-	6.895	-	5.24	5.52	.454	.441	.182	6.530		.174		A20	266.0	137700	
N1300-650	610	6.500	165	.156		7.170		5.49	5.78	.454	.441	.182	6.790		.174		435	281.0	143300	
N1300-662	6%	6.625	-	.156		7.308	±.080	5.60	5.90	.454	.441	.182	6.925		.174		.450	305.0	146000	
N1300-675	634	6.750	-	.156		7.445	10000	5.65	5.95	.508	.456	.182	7.055		.174		.456	325.0	148800	
N1300-700	7	7.000	-	.156		7,720		5.88	6.19	.540	.474	.182	7.315		.174		.471	344.0	154000	
N1300-725	714	7,250	-	.187		7.995		6.08	6.40	.570	.490	.182	7.575		.209		.486	428.0	191500	
N1300-750	71/12	7.500		.187		8.270		6.33	6.67	.570	.507	.182	7.840		209		.510	485.0	198200	
N1300-775	734	7,750	-	.187	±.005	8.545		6.58	6.93	.560	.500	.182	8,100	1	.209	10000	.525	520.0	204800	
N1300-800	8	8.000	-	.187		8.820		6.75	7.11	.600	.530	.182	8.360	±.008	.209	+.008	.540	555.0	211400	
N1300-825	8%4	8.250	-	.187		9.095		7.00	7.37	.600	.548	.182	8.620		209	- 000	.555	603.0	218000	
N1300-850	81/2	8.500	-	.187		9.285		7.13	7.51	.632	.573	,182	8.880		209		.570	634.0	224600	
N1300-875	874	8.750	-	.187		9.558	2.090	7.38	7.77	.632	.576	.182	9.145		.209		591	653.0	230400	
N1300-900	9	9.000	-	.187		9.830	2.272.272	7.63	8.03	.632	.592	.182	9.405		.209		.606	732.0	237800	
N1300-925	9%	9.250	235	.187	-	10,102		7.88	8.30	:632	.622	.182	9.668		.200		.627	767.0	244000	
N1300-950	91/0	9.500	-	.187		10.375		7.98	8.41	.632	.622	.182	9.930		209		.645	803.0	251000	
N1300-975	9%	9.750	-	.187		10.648		8.23	8.67	No	.622	.182	10.190		209		860	833.0	257600	-
N1300-1000	10	10.000	-	.187		10.920		8.48	8.93	Lug	.622	.182	10.450		.209		.675	863.0	264200	

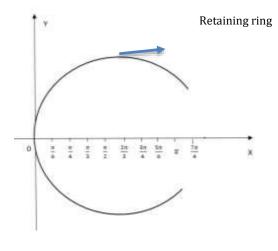


Figure 3

Volume - 5, Issue - 2, Feb - 2019

Thus we have found the arc length of upper part of the retaining ring.

To find the full arc length of the rotor clip we have to multiply the value of upper part of the retaining ring by 2. Therefore,

$$L = 2 * 3.3554$$

$$L = 6.7107 cm$$

The arc length of retaining ring whose diameter is 4 inch = 2.642 inch.

PROBLEM (2):

Find the arc length of retaining ring which have the diameter 2.5 inches using integration.

Given:

Diameter (d): 2.5 inches = 6.35 cm Radius (a): 1.25 inches = 3.175cm We know that: The Arc length $r=a\theta$ Therefore, We take $f(x) = a \cos\left(\frac{x}{a}\right)$ On differentiating we get, $f'(x) = -\sin\left(\frac{x}{a}\right)$ We know that: Arc Length (L) = $\int_a^b \sqrt{1 + [f'(x)]^2} dx$ From the figure 4 we get, a =0; b = $\frac{3\pi}{4}$ Substituting, f'(x), a, b in the arc length formula $L = \int_0^{\frac{3\pi}{4}} \sqrt{1 - \sin^2\left(\frac{x}{a}\right)} dx$ We know that, $\cos^{2}\theta + \sin^{2}\theta = 1$ $L = \int_{0}^{\frac{3\pi}{4}} \sqrt{\cos^{2}\left(\frac{x}{a}\right)} dx$ $L = a \sin \left(\frac{\frac{3\pi}{4}}{a}\right)$

We know that,

a= 3.175cm

Therefore,

L = 3.175 * sin
$$\left(\frac{\frac{3\pi}{4}}{3.175}\right)$$

L = 2.1458 cm

Thus we have found the arc length of upper part of the retaining ring.

To find the full arc length of the rotor clip we have to multiply the value of upper part of the retaining ring by 2. Therefore,

L = 2 * 2.1458

$$L = 4.2916cm$$

The arc length of retaining ring whose diameter is 2.5 inch = 1.6896 inch.

PROBLEM (3):

Find the surface area of the retaining ring whose Outer diameter is 3 inch and Inner diameter is 2.16inch.

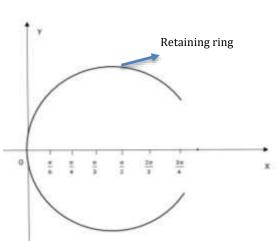
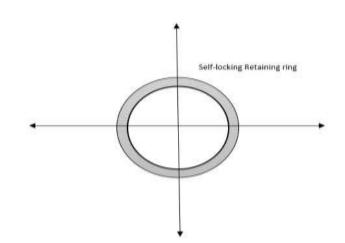



Figure 4

Figure 5

Given:

Outer diameter (O.D) = 3 inch = 7.62 cmInner diameter (I.D) = 2.16 inch = 5.49 cmOuter radius (O.R) = 1.5 inch = 3.81 cm

Inner radius (I.R) = 1.07 inch = 2.74 cm

Let the outer diameter sphere be A and the inner diameter sphere be B.

To find the surface area of retaining ring we have to find the surface area of sphere A and surface are of sphere B of retaining ring. Then, we have to differentiate it. Since the retaining clip is in circular shape we can take it's equation as

 $\sqrt{x^2 + y^2} = a$ Where a is outer radius (O.R)

The semi-circle be $x^2 + y^2 = a^2$

Surface area of sphere A =

On differentiating the above equation we get,

$$\frac{dy}{dx} = -\frac{x}{y}$$

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \frac{x^2}{y^2}}$$

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \frac{a}{y}$$

$$2\int_0^a 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$= 4\pi \int_0^a y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

 $=4\pi a^2$

Here, a = 3.81 cm Therefore, Surface area of sphere A = $4\pi (3.81)^2$ =58.06 π sq.cm

Similarly,

In the sphere B the equation will be $\sqrt{x^2 + y^2} = b$ where b is outer radius (O.R) The semi-circle be $x^2 + y^2 = b^2$

Therefore, $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \frac{b}{y}$ Surface area of B = $4\pi b^2$ Here, b = 2.74 cm

Therefore,

Surface area of sphere $B = 4\pi (2.74)^2$

 $=30.03\pi$ sq.cm

Then the surface area of the retaining ring 3 inch is the difference of the surface area of sphere A and B is The surface area of sphere A – The surface area of the sphere $B = 28.03\pi$ sq.cm

6. CONCLUSION:

The retaining ring's arc length is found using first order derivative integral formula which will help to find the ring's aspects to fit in the shaft assembling. Also, the surface area of the self-locking retaining ring is estimated using integration which will ensure the smoothness on the ring.

REFERENCES:

Books:

- 1. Manikavachagam Pillai .T.K , Narayanan .S (2008). *Calculus volume-II*. S. Viswanathan Printers and Publishers.
- 2. Kandasamy .P, Thilagavathy .K (2004). *Mathematics for BSc Volume II*. Chennai, S. Chand and Company Pvt. Ltd.
- 3. Shanthi Narayanan , Kapoor .J.N. A Text book of Calculus. Chennai, S. Chand and Company Pvt. Ltd.

Web References:

- https://www.mathsisfun.com/calculus/arc-length.html
- https://www.rotorclip.com/newsletter0812.php
- http://rotorclip.com/uk/appring.php
- https://RetainingRings.pdf
- https://surface area of sphere/Wikipedia