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1. INTRODUCTION :  

The Transportation Problem (TP) is a type of linear programming problem that involves finding the most cost-effective 

shipping routes to transport a single type of product from multiple sources to multiple destinations while meeting their 

supply and demand requirements. This problem was first introduced by Hitchcock [2]. The problem of minimizing the 

duration of transportation was also studied by many researchers. In a time minimizing transportation problem (TMTP), 

the goal is to transport a homogeneous product from sources to destinations in least possible time while satisfying the 

supply and demand constraints. TMTP has been extensively studied by many researchers Hammer [4], Szwarc [5] 

Khurana and Arora [6], Bhatia et al. [7], Prakash [9]. Hammer [4] and Szwarc [5] used leveling techniques to solve this 

problem. Agrawal and Sharma [10-13] introduced time minimizing transportation problem with mixed constraints 

(TMTP-MC). They have developed various methods to solve it, such as the open loop method [10], minimax method 

[11], shootout method [12] and also examined the MFL paradoxical situation [13]. Their methods can also be applied 

to the TMTP. 

 Orden [3] extended the transportation problem by allowing for transshipment, where any shipping or receiving 

point can also act as an intermediate point. This helps to lower transportation costs and save time compared to not using 

transshipment. The problem of minimizing the time in transshipment problem was first introduced by Garg and Prakash 

[9], known as the time minimizing transshipment problem (TMTsP). They developed a two-phase computational method 

to obtain the solution of time minimizing transshipment problem. Further, Khurana and Verma [8] established a method 

to solve TMTsP keeping in mind the objective to minimize the maximum duration of time in transportation. In this 

method they solved the transshipment problem by transforming it into an equivalent transportation problem. Optimal 

solution of the transshipment problem is obtained from the optimal solution of the transformed transportation problem. 

In real-life situations, supply, demand and transportation cost can vary within a specific range rather than being fixed. 

Dealing with this variability, known as the Transportation Problem with Interval Constraints, is essential for practical 

applications. Interval constraints allow for a more realistic representation of supply and demand fluctuations, leading to 

more robust solutions that can be applied to everyday scenarios. Several well-organized techniques for solving 

Abstract: This paper presents a method for solving a variant of time minimizing transshipment problem containing 

intervals for time and constraints. The goal is to find a least transportation time when moving a single type of 

product from suppliers to customers. In this article, first, the time minimizing transshipment problem of interval 

constraints is converted into a time-minimizing transportation problem of interval constraints by adding buffer 

stock at each transshipment point. Then, the mid-width method is applied to obtain the feasible solution. Using 

mid-width method, the transportation problem decomposed into two different crisp transportation problems, a 

mid-value transportation problem and a half-width transportation problem. The mid-value transportation problem 

is solved using shootout method to find the optimal solution. The half-width transportation problem is solved 

starting with the basic cells to be same with the mid-value transportation problem. The solutions to these 

decomposed problems are then integrated to produce the solution for the transformed transportation problem, 

ultimately leading to the solution of the original transshipment problem. The proposed algorithm demonstrates 

the solution procedure and is justified with the help of a numerical illustration.  

 

Keywords: Time minimizing Transportation Problem; Transshipment Problem; Time Minimizing Transshipment 

Problem; buffer stock; Interval transportation problem; Interval transshipment problem. 
 

DOIs:10.2015/IJIRMF/202408033                                  --:--                         Research Paper / Article / Review 

mailto:1himanshuagrawal74143@gmail.com
mailto:2shambhusharma@dei.ac.in


INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD          
ISSN(O): 2455-0620                                                      [ Impact Factor: 9.47 ]          
Monthly, Peer-Reviewed, Refereed, Indexed Journal with  IC Value : 86.87         
Volume - 10,  Issue - 8,  August -  2024             
 

 

Available online on – WWW.IJIRMF.COM Page 227 

transportation problems with interval source, destination parameter, and cost were established [14-19]. Sengupta and 

Pal [18] introduced a new fuzzy orientation approach to solve interval transportation problems by considering the 

midpoint and width of the interval in the objective function. Pandian and Natarajan [14] developed the separation method 

to solve integer interval transportation problems and minimize costs using the zero-point method. Subhakanta, Dash, 

and Mohanty [21] discussed a method for solving transportation problems that considers the unit cost of transportation 

from a source to a destination as a rough integer interval. Akilbasha et al. [14] proposed the split and separation method 

to find optimal solutions for integer transportation problems in a rough environment. Pandian et al. [15] developed the 

slice-sum method to determine optimal solutions for fully rough interval integer transportation problems. Akilbasha et 

al. [22] introduced an innovative exact method for solving fully interval integer transportation problems. The mid-width 

method is used to find optimal solutions for interval transportation problems where shipping costs, supply, and demand 

parameters are real intervals. This method is exact and is based on two independent transportation problems derived 

from a fully integer transportation problem. This concept inspired the development of the proposed methodology. 

P. Rajendran and P. Pandian [24] proposed a method namely, splitting method for finding an optimal solution to a 

transshipment problem in which all parameters are real intervals. Porchelvi, S. et al. [23] gave a comparative study 

between optimum solution of transportation and transshipment problem for the cost minimizing objective function 

where the source, destination parameters and cost is expressed as interval values. However, the Time Minimizing 

 Transshipment Problem with interval Constraints (TMTsP-IC) has not been studied yet. 

This paper presents the mid-width method to find a basic feasible solution for the TMTsP-IC. Firstly, the problem is 

transformed into a time-minimizing transportation problem by adding buffer stock at each transshipment point. The 

mid-width method then decomposes the problem into two distinct transportation problems: a mid-value transportation 

problem, and a half-width transportation problem. The mid-value transportation problem is solved using the shootout 

method [12] and find an optimal solution. The half-width transportation problem is solved with initial basic cells 

identical to the mid-value problem. The solutions to these decomposed problems are combined to resolve the original 

transshipment problem. The organization of the paper is as follows. In section 2 preliminary definition are given. In 

Section 3, the mathematical formulation of TMTsP-IC is given. In section 4, the theoretical development of the proposed 

algorithm for TMTsP and its stepwise procedure are described in section 5. Section 6 consists of a numerical illustration 

that helps to verify the working of the algorithm. Section 7 is dedicated to conclusion. 

 

2. Preliminaries : 

Some fundamental definitions and results related to real intervals are as follows 

Let 𝐴 = [𝑎𝐿 , 𝑎𝑅] = {𝑎: 𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑅 , 𝑎 ∈ ℝ}, where 𝑎𝐿 and 𝑎𝑅 are the left and right limits of A, respectively. The 

interval is also denoted by its mid-value (center) and half-width as A= 〈𝑎𝑚, 𝑎𝑤〉 = {𝑎: 𝑎𝑚 − 𝑎𝑤 ≤ 𝑎 ≤ 𝑎𝑚 + 𝑎𝑤 , 𝑎 ∈
ℝ}, where 𝑎𝑚 = (𝑎𝑅 + 𝑎𝐿)/2 is the center or mid-value of A and 𝑎𝑤 = (𝑎𝑅 − 𝑎𝐿)/2 is the half-width of A. 

Algebra of intervals: Let 𝐴 = [𝑎𝐿 , 𝑎𝑅] = {𝑎: 𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑅 , 𝑎 ∈ ℝ} and 𝐵 = [𝑏𝐿 , 𝑏𝑅] = {𝑥: 𝑏𝐿 ≤ 𝑥 ≤ 𝑏𝑅 , 𝑎 ∈ ℝ} be 

two intervals then 

i.  𝐴 + 𝐵 = [𝑎𝐿 + 𝑏𝐿 , 𝑎𝑅 + 𝑏𝑅] and 

ii. 𝑘𝐴 = [𝑘𝑎𝐿, 𝑘𝑎𝑅] where k is positive number  

iii. 𝑘𝐴 = [𝑘𝑎𝑅 , 𝑘𝑎𝐿]  where k is negative number  

iv. 𝐴 × 𝐵 = [𝑝, 𝑞],wher p=minimum {𝑎𝐿𝑏𝐿 , 𝑎𝐿𝑏𝑅 , 𝑎𝑅𝑏𝐿, 𝑎𝑅𝑏𝑅} and q= maximum {𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑅 , 𝑎𝑅𝑏𝐿, 𝑎𝑅𝑏𝑅} 

Definition 1. Let  𝐴 = [𝑎𝐿 , 𝑎𝑅] and 𝐵 = [𝑏𝐿 , 𝑏𝑅] be two intervals. Then the order relation between A and B is defined 

as, 𝐴 ≤ 𝐵 if 𝑎𝐿 ≤ 𝑏𝐿 and 𝑎𝑅 ≤ 𝑏𝑅, 𝐴 = 𝐵 if and only if 𝑎𝐿 = 𝑏𝐿 and 𝑎𝑅 = 𝑏𝑅 

Definition 2. Let 𝐴 = [𝑎𝐿 , 𝑎𝑅] be real interval. Then, A is said to be positive denoted by 𝐴 ≥ 0 𝑖𝑓 𝑎𝐿 ≥ 0 

Definition 3. Let 𝐴 = [𝑎𝐿 , 𝑎𝑅] be interval. Then, A is said to be integer interval if 𝑎𝐿  𝑎𝑛𝑑 𝑎𝑅  are the integers. 

Definition 4. Let 𝐴 = [𝑎𝐿 , 𝑎𝑅] and 𝐵 = [𝑏𝐿, 𝑏𝑅] be two intervals. The Ordering of two intervals based on mid-value is 

as follow, 

(i) 𝐴 = 𝐵 if  𝑚(𝐴) = 𝑚(B) 

(ii) 𝐴 >B if  𝑚(𝐴) > 𝑚(B)  

(iii) A < B if  𝑚(𝐴) < 𝑚(B) 

Definition 5. Let 𝐴 = [𝑎𝐿 , 𝑎𝑅] and 𝐵 = [𝑏𝐿, 𝑏𝑅] be two intervals. The ordering of two intervals based on half width is 

as follow,  

(i) 𝐴 = 𝐵 if    𝑤(𝐴) = 𝑤(𝐵) 
(ii) A ≥ B if   𝑤(𝐴)  ≥ 𝑤(𝐵) 
(iii) A ≤ B if  𝑤(𝐴)  ≤ 𝑤(𝐵) 
Result: if 𝑚(𝐴) = 𝑚1 𝑎𝑛𝑑 𝑤(𝐴) = 𝑤1𝑡ℎ𝑒𝑛 𝐴 = [𝑚1 − 𝑤1 , 𝑚1 + 𝑤1 ]    
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Interval Ordering: Ordering real intervals in mathematics can be approached in different ways depending on the 

context and the criteria for ordering. Here are a few common methods: 

Lexicographic Order: This method involves ordering intervals based on their endpoints. First, compare the left 

endpoints of the intervals. If the left endpoints are equal, then compare the right endpoints. Example: Consider the set 

of intervals, S= {[1, 3], [2, 4], [1, 2]}. Lexicographically, they would be ordered as: [1, 2], [1, 3], [2, 4]. Min S= [1,2], 

Max S= [2,4],  

Order by Length: Intervals can be ordered by their length (i.e., the difference between the right and left endpoints). 

This method can order intervals from the shortest to the longest or vice versa. Example: Consider the set S= {[1, 3], [2, 

4], [1, 2]}. The lengths of intervals of S are 2, 2, and 1, respectively. Ordered by length, they would be: [1, 2], [1, 3], [2, 

4].  Min S= [1,2], Max S= [2,4], 

Order by Left Endpoint: Intervals can be ordered by their left endpoint only. If two intervals have the same left 

endpoint, they can be further ordered by the right endpoint as a secondary criterion. Example: Consider the set of 

intervals S. Ordered by the left endpoint, they would be: [1, 2], [1, 3], [2, 4]. Min S= [1,2], Max S= [2,4], 

Containment Order: This method orders intervals based on whether one interval is contained within another. An 

interval [a, b] is less than or equal to an interval [c, d] if [a, b] sub set [c, d]. Example: Consider the set of intervals S. 

Ordered by containment, [1, 2] sub set [1, 3], so the order could be [1, 2], [1, 3], and [2, 4] (since there is no containment 

relationship between [1, 3] and [2, 4]. 

Custom Order:  Sometimes intervals are ordered based on specific custom criteria relevant to a particular problem or 

application. For example, intervals might be ordered based on their midpoints, or based on a function applied to their 

endpoints. Example: Suppose we order intervals by the midpoint of the interval. Consider the set of intervals S. The 

midpoints are 2, 3, and 1.5, respectively. Ordered by midpoint, they would be: [1, 2], [1, 3], [2, 4]. Min S= [1,2], Max 

S= [2,4]. 

Remark: The choice of ordering method depends on the specific requirements and context of the problem at hand. Each 

method provides a different perspective on how to compare and arrange intervals. 

For more information related to intervals ordering see [14-20]. 

 

3. Mathematical Model of The Transshipment Problem with Interval Constraints (TMTsP-IC) : 

Suppose that, we have ‘m’ sources and ‘n’ destinations. Since, in a transshipment problem, any source or destination 

can ship to any other source or destination so it would be convenient to number them successively. The sources are 

numbered from 1 to m and the destinations are numbered from m to m + n. Let [𝑎𝐿𝑖
, 𝑎𝑅𝑖

] be the quantities range available 

at the origins 𝑂𝑖 and [𝑏𝐿𝑗
, 𝑏𝑅𝑗

] be the range of demand at the destinations 𝐷𝑗. In the transshipment problem 

𝑂1, 𝑂2, … 𝑂𝑖, … 𝑂𝑚 are sources from where a homogeneous commodity is transported to destinations 

 𝐷𝑚+1, 𝐷𝑚+2, … 𝐷𝑚+𝑗, … 𝐷𝑚+𝑛. Now each point 𝑂1, 𝑂2, … 𝑂𝑖, … 𝑂𝑚𝐷𝑚+1, 𝐷𝑚+2, … 𝐷𝑚+𝑗, … 𝐷𝑚+𝑛 behaves like supply 

as well as demand point so called as transshipment point. 

Let [𝑥𝑖𝑗 , 𝑦𝑖𝑗] be the quantity range shipped from transshipment point 𝑂𝑖; 𝑖 = 1,2 … 𝑚, 𝐷𝑗; 𝑗 = 𝑚 + 1, 𝑚 + 2, … 𝑚 + 𝑛 to 

the transshipment point 𝑂𝑖; 𝑖 = 1,2 … 𝑚, 𝐷𝑗; 𝑗 = 𝑚 + 1, 𝑚 + 2, … 𝑚 + 𝑛 and [𝑡𝐿𝑖𝑗
, 𝑡𝑅𝑖𝑗

] be the corresponding shipping 

time range. The table-1 is demonstrated for interpreting the given information which allows a compact representation 

of the problem.  

In time minimizing transshipment problem with interval constraints we have to find [𝑡𝐿𝑖𝑗
, 𝑡𝑅𝑖𝑗

] and [𝑥𝑖𝑗 , 𝑦𝑖𝑗] which 

(P)                        𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑚𝑎𝑥
𝑖,𝑗

{[𝑡𝐿𝑖𝑗
, 𝑡𝑅𝑖𝑗

] ∶ [𝑥𝑖𝑗 , 𝑦𝑖𝑗] > 0} 

                 Subject to, 

∑ [𝑥𝑖𝑗 , 𝑦𝑖𝑗]

𝑚+𝑛

𝑗=1

− ∑ [𝑥𝑗𝑖, 𝑦𝑗𝑖]

𝑚+𝑛

𝑗=1

= [𝑎𝐿𝑖
, 𝑎𝑅𝑖

], 𝑖 = 1,2,3, … , 𝑚 

 

(1) 

∑ [𝑥𝑖𝑗, 𝑦𝑖𝑗]

𝑚+𝑛

𝑖=1

− ∑ [𝑥𝑗𝑖, 𝑦𝑗𝑖]

𝑚+𝑛

𝑖=1

= [𝑏𝐿𝑗
, 𝑏𝑅𝑗

], 𝑗 = 1,2,3, … , 𝑛 

 

(2) 

[𝑥𝑖𝑗 , 𝑦𝑖𝑗] ≥ 0 ; 𝑖, 𝑗 = 1,2, … 𝑚 + 𝑛, 𝑖 ≠ 𝑗 

[𝑡𝐿𝑖𝑖
, 𝑡𝑅𝑖𝑖

]  = 0, 𝑖 = 1,2, … 𝑚 + 𝑛 

[𝑎𝐿𝑖
, 𝑎𝑅𝑖

] ≥ 0 ; 𝑖 = 1,2. . . 𝑚 𝑎𝑛𝑑 [𝑏𝐿𝑗
, 𝑏𝑅𝑗

] ≥ 0 ; 𝑗 = 𝑚 + 1, 𝑚 + 2. . . 𝑚 + 𝑛. 
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Unbalanced transshipment problem arises when 

 

∑[𝑎𝐿𝑖
, 𝑎𝑅𝑖

] ≠

𝑚

𝑖=1

∑ [𝑏𝐿𝑗
, 𝑏𝑅𝑗

]

𝑚+𝑛

𝑗=𝑚+1

 

Note that in transshipment problem [𝑥𝑖𝑖, 𝑦𝑖𝑖] = 𝛼, does not make any prolific sense as it represents the quantity shipped 

from the ith-transshipment point to the same transshipment point so in the final feasible solution of the transshipment 

problem this can be avoided. 

It is assumed in the proposed problem that   

i. The carriers have sufficient capacity to carry goods from source to a destination in a single trip 

ii. They start simultaneously from their respective sources 

Let us make note of the following definitions which will be useful in the paper. 

1. Feasible solution: The set 𝑺 = {[𝒙𝒊𝒋, 𝒚𝒊𝒋]: [𝒙𝒊𝒋, 𝒚𝒊𝒋] ≥ 𝟎} is said to be a feasible solution of TMTsP-IC (P) if it 

satisfies the equations (1) and (2). 𝑻 =  [𝒕𝑳𝜶𝜷
, 𝒕𝑹𝜶𝜷

] = 𝒎𝒂𝒙
𝒊,𝒋

{[𝒕𝑳𝒊𝒋
, 𝒕𝑹𝒊𝒋

] ∶ [𝒙𝒊𝒋, 𝒚𝒊𝒋] > 𝟎} is the time span corresponding 

to the feasible solution S. 

2. Better Feasible solution: Let 𝑺𝟏 and 𝑺𝟐 be two feasible solution of (P) and 𝑻𝟏 𝒂𝒏𝒅 𝑻𝟐 be the corresponding 

time span then  𝑺𝟐 is said to be a better feasible solution than 𝑺𝟏, if  𝑻𝟐 < 𝑻𝟏. 

3. Optimal solution: A feasible solution is said to be an optimal solution if there does not exist any better feasible 

solution, i.e. for which the time of transportation is the least. 

 

Table-1: Table of TMTsP-IC 

  

 

4. Methodology : 

Transition from Time minimizing Transshipment problem with interval constraints to time minimizing 

transportation problem with interval constraints  
 

A method for transforming the TMTsP into TMTP has been developed by Khurana and Arora [8]. Similarly, we 

transform the TMTsP-IC into the TMTP-IC. If we add buffer stock [𝑚𝐿 , 𝑚𝑅] = ∑ [𝑎𝐿𝑖
, 𝑎𝑅𝑖

]𝑚
𝑖=1 = ∑ [𝑏𝐿𝑗

, 𝑏𝑅𝑗
]𝑚+𝑛

𝑗=𝑚+1  to 

each transshipment point, then the transshipment problem of 𝑚 × 𝑛 order can be converted to  the transportation problem 

of (𝑚 + 𝑛) × (𝑚 + 𝑛) order, which is 

(P1)    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑚𝑎𝑥
𝑖,𝑗

{[𝒕𝑳𝒊𝒋
, 𝒕𝑹𝒊𝒋

] ∶ [𝑥𝑖𝑗, 𝑦𝑖𝑗] > 0} 

Subject to, 

 𝑂1 … 𝑂𝑖  … 𝑂𝑚 𝐷𝑚+1 … 𝐷𝑚+𝑗  … 𝐷𝑚+𝑛 𝑠𝑢𝑝𝑝𝑙𝑦 

𝑂1 [𝑡𝐿11
, 𝑡𝑅11

] … [𝑡𝐿1𝑖
, 𝑡𝑅1𝑖

] … [𝑡𝐿1,𝑚
, 𝑡𝑅1,𝑚

] [𝑡𝐿1,𝑚+1
, 𝑡𝑅1,𝑚+1

] … [𝑡𝐿1,𝑚+𝑗
, 𝑡𝑅1,𝑚+𝑗

] … [𝑡𝐿1,𝑚+𝑛
, 𝑡𝑅1,𝑚+𝑛

] [𝑎𝐿1
, 𝑎𝑅1

] 

𝑂2 [𝑡𝐿21
, 𝑡𝑅21

] … [𝑡𝐿2𝑖
, 𝑡𝑅2𝑖

] … [𝑡𝐿2,𝑚
, 𝑡𝑅2,𝑚

] [𝑡𝐿2,𝑚+1
, 𝑡𝑅2,𝑚+1

] … [𝑡𝐿2,𝑚+𝑗
, 𝑡𝑅2,𝑚+𝑗

] … [𝑡𝐿2,𝑚+𝑛
, 𝑡𝑅2,𝑚+𝑛

] [𝑎𝐿2
, 𝑎𝑅2

] 

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

𝑂𝑖  [𝑡𝐿𝑖1
, 𝑡𝑅𝑖1

] … [𝑡𝐿𝑖𝑖
, 𝑡𝑅𝑖𝑖

] … [𝑡𝐿𝑖,𝑚
, 𝑡𝑅𝑖,𝑚

] [𝑡𝐿𝑖,𝑚+1
, 𝑡𝑅𝑖,𝑚+1

] … [𝑡𝐿𝑖,𝑚+𝑗
, 𝑡𝑅𝑖,𝑚+𝑗

] … [𝑡𝐿𝑖,𝑚+𝑛
, 𝑡𝑅𝑖,𝑚+𝑛

] [𝑎𝐿𝑖
, 𝑎𝑅𝑖

] 

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

𝑂𝑚 [𝑡𝐿𝑚,1
, 𝑡𝑅𝑚,1

] … [𝑡𝐿𝑚,𝑖
, 𝑡𝑅𝑚,𝑖

] … [𝑡𝐿𝑚,𝑚
, 𝑡𝑅𝑚,𝑚

] [𝑡𝐿𝑚,𝑚+1
, 𝑡𝑅1,𝑚+1

] … [𝑡𝐿𝑚𝑚+𝑗
, 𝑡𝑅𝑚𝑚+𝑗

] … [𝑡𝐿𝑚,𝑚+𝑛
, 𝑡𝑅𝑚,𝑚+𝑛

] [𝑎𝐿𝑚
, 𝑎𝑅𝑚

] 

𝐷𝑚+1 [𝑡𝐿𝑚+1,1
, 𝑡𝑅𝑚+1,1

] … [𝑡𝐿𝑚+1,𝑖
, 𝑡𝑅𝑚+1,𝑖

] … [𝑡𝐿𝑚+1,𝑚
, 𝑡𝑅𝑚+1,𝑚

] [𝑡𝐿𝑚+1,𝑚+1
, 𝑡𝑅𝑚+1,𝑚+1

] … [𝑡𝐿𝑚+1,𝑚+𝑗
, 𝑡𝑅𝑚+1,𝑚+𝑗

] … [𝑡𝐿𝑚+1,𝑚+𝑛
, 𝑡𝑅𝑚+1,𝑚+𝑛

] − 

𝐷𝑚+2 [𝑡𝐿𝑚+2,1
, 𝑡𝑅𝑚+2,1

] … [𝑡𝐿𝑚+2,𝑖
, 𝑡𝑅𝑚+2,𝑖

] … [𝑡𝐿𝑚+2,𝑚
, 𝑡𝑅𝑚+2,𝑚

] [𝑡𝐿𝑚+2,𝑚+1
, 𝑡𝑅𝑚+2,𝑚+1

] … [𝑡𝐿𝑚+2,𝑚+𝑗
, 𝑡𝑅𝑚+2,𝑚+𝑗

] … [𝑡𝐿𝑚+2,𝑚+𝑛
, 𝑡𝑅𝑚+2,𝑚+𝑛

] − 

⋮           ⋮ 

𝐷𝑚+𝑗  [𝑡𝐿𝑚+𝑗,1
, 𝑡𝑅𝑚+𝑗,1

] … [𝑡𝐿𝑚+𝑗,𝑖
, 𝑡𝑅𝑚+𝑗,𝑖

] … [𝑡𝐿𝑚+𝑗,𝑚
, 𝑡𝑅𝑚+𝑗,𝑚

] [𝑡𝐿𝑚+𝑗,𝑚+1
, 𝑡𝑅𝑚+𝑗,𝑚+1

] … [𝑡𝐿𝑚+𝑗,𝑚+𝑗
, 𝑡𝑅𝑚+𝑗,𝑚+𝑗

] … [𝑡𝐿𝑚+𝑗,𝑚+𝑛
, 𝑡𝑅𝑚+𝑗,𝑚+𝑛

] − 

⋮           ⋮ 

𝐷𝑚+𝑛   [𝑡𝐿𝑚+𝑛,1
, 𝑡𝑅𝑚+𝑛,1

] … [𝑡𝐿𝑚+𝑛,𝑖
, 𝑡𝑅𝑚+𝑛,𝑖

] … [𝑡𝐿𝑚+𝑛,𝑚
, 𝑡𝑅𝑚+𝑛,𝑚

] [𝑡𝐿𝑚+𝑛,𝑚+1
, 𝑡𝑅𝑚+𝑛,𝑚+1

] … [𝑡𝐿𝑚+𝑛,𝑚+𝑗
, 𝑡𝑅𝑚+𝑛,𝑚+𝑗

] … [𝑡𝐿𝑚+𝑛,𝑚+𝑛
, 𝑡𝑅𝑚+𝑛,𝑚+𝑛

] − 

𝑑𝑒𝑚𝑎𝑛𝑑 − − − − − [𝑏𝐿𝑚+1
, 𝑏𝑅𝑚+1

] … [𝑏𝐿𝑚+𝑗
, 𝑏𝑅𝑚+𝑗

] … [𝑏𝐿𝑚+𝑛
, 𝑏𝑅𝑚+𝑛

] − 
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∑ [𝑥𝑖𝑗 , 𝑦𝑖𝑗]

𝑚+𝑛

𝑗=1

= [𝑎𝐿𝑖
+ 𝑚𝐿 , 𝑎𝑅𝑖

+ 𝑚𝑅], 𝑖 = 1,2,3, … , 𝑚 (3) 

∑ [𝑥𝑖𝑗 ,

𝑚+𝑛

𝑗=1

𝑦𝑖𝑗] =  [𝑚𝐿 , 𝑚𝑅] , 𝑖 = 𝑚 + 1, 𝑚 + 2, … 𝑚 + 𝑛 (4) 

∑ [𝑥𝑖𝑗 ,

𝑚+𝑛

𝑖=1

𝑦𝑖𝑗] =  [𝑚𝐿 , 𝑚𝑅] , 𝑗 = 1,2, … 𝑚 (5) 

∑ [𝑥𝑖𝑗 , 𝑥𝑖𝑗]

𝑚+𝑛

𝑖=1

= [𝑏𝐿𝑗
+ 𝑚𝐿 , 𝑏𝑅𝑗

+ 𝑚𝑅] , 𝑗 = 𝑚 + 1, 𝑚 + 2, … 𝑚 + 𝑛 (6) 

[𝑥𝑖𝑗 , 𝑦𝑖𝑗] ≥ 0 ; 𝑖, 𝑗 = 1,2, … 𝑚 + 𝑛, 𝑖 ≠ 𝑗 

[𝑎𝐿𝑗
, 𝑎𝑅𝑗

] ≥ 0 ; 𝑖 = 1,2. . . 𝑚 𝑎𝑛𝑑 [𝑏𝐿𝑗
, 𝑏𝑅𝑗

] ≥ 0 ; 𝑗 = 𝑚 + 1, 𝑚 + 2. . . 𝑚 + 𝑛 

Theorem: Feasible solution of TMTP-IC (P1) is also feasible solution of TMTsP-IC (P). 

Proof: let 𝑆 = {[𝑥𝑖𝑗, 𝑦𝑖𝑗]: [𝑥𝑖𝑗, 𝑦𝑖𝑗] ≥ 0} be feasible solution of P1, then it will hold (3), (4), (5) and (6) with non-

negativity constraints. 

Subtract each equation of (5) from corresponding equation of (3), we get  

∑ [𝑥𝑖𝑗 , 𝑦𝑖𝑗]

𝑚+𝑛

𝑗=1

− ∑ [𝑥𝑗𝑖, 𝑦𝑗𝑖]

𝑚+𝑛

𝑗=1

= [𝑎𝐿𝑖
, 𝑎𝑅𝑖

], 𝑖 = 1,2,3, … , 𝑚 

Similarly, subtract each equation of (6) from corresponding equation of (4), we get  

∑ [𝑥𝑖𝑗 , 𝑦𝑖𝑗]

𝑚+𝑛

𝑖=1

− ∑ [𝑥𝑗𝑖, 𝑦𝑗𝑖]

𝑚+𝑛

𝑖=1

= [𝑏𝐿𝑗
, 𝑏𝑅𝑗

], 𝑗 = 1,2,3, … , 𝑛 

these are the feasibility conditions of P. Hence  𝑆 = {[𝑥𝑖𝑗 , 𝑦𝑖𝑗]: [𝑥𝑖𝑗, 𝑦𝑖𝑗] ≥ 0} is feasible solution of P. 

 

Splitting of Problem (P1) into Mid-value TP And Half-Width TP 

Let 𝑎𝑚𝑖
 𝑎𝑛𝑑 𝑎𝑤𝑖

; 𝑖 = 1,2, … , 𝑚, 𝑚 + 1, … 𝑚 + 𝑛 be the mid-point and half-width of [𝑎𝐿𝑖
+ 𝑚𝐿 , 𝑎𝑅𝑖

+ 𝑚𝑅], 𝑖 =

1,2,3, … , 𝑚 and [𝑚𝐿 , 𝑚𝑅]; 𝑖 = 𝑚 + 1, 𝑚 + 2, … , 𝑚 + 𝑛 respectively. Similarly  𝑏𝑚𝑖
 𝑎𝑛𝑑 𝑏𝑤𝑖

; 𝑖 = 1,2, … , 𝑚, 𝑚 +

1, … 𝑚 + 𝑛 be the mid-point and half-width of [𝑏𝐿𝑖
+ 𝑚𝐿 , 𝑏𝑅𝑖

+ 𝑚𝑅], 𝑖 = 1,2,3, … , 𝑚 𝑎𝑛𝑑 [𝑚𝐿 , 𝑚𝑅]; 𝑖 = 𝑚 + 1, 𝑚 +

2, … , 𝑚 + 𝑛 respectively. Also 𝑚𝑖𝑗 is the mid-point and 𝑤𝑖𝑗be the half width of [𝑥𝑖𝑗 , 𝑦𝑖𝑗] and 𝑡𝑚𝑖𝑗
 is the mid-point and  

𝑡𝑤𝑖𝑗
 be the half width of [𝑡𝐿𝑖𝑗

, 𝑡𝑅𝑖𝑗
] 

Then, the mid-value transportation problem of the problem P1 can be defined as, 

  (M)                                    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑚𝑎𝑥
𝑖,𝑗

{𝑡𝑚𝑖𝑗
: 𝑚𝑖𝑗 > 0} 

         Subject to,    

∑ 𝑚𝑖𝑗

𝑚+𝑛

𝑗=1

= 𝑎𝑚𝑖
, 𝑖 = 1,2,3, … , 𝑚, 𝑚 + 1, … , 𝑚 + 𝑛 (7) 

∑ 𝑚𝑖𝑗 ,

𝑚+𝑛

𝑖=1

= 𝑏𝑚𝑗
, 𝑗 = 1,2,3, … , 𝑛, 𝑛 + 1, … , 𝑛 + 𝑚  (8) 

𝑚𝑖𝑗 , ≥ 0 ; 𝑖, 𝑗 = 1,2, … 𝑚 + 𝑛, 𝑖 ≠ 𝑗, 𝑖 = 1,2, … 𝑚 + 𝑛 

𝑎𝑚𝑖
 ≥ 0 ; 𝑖 = 1,2. . . 𝑚, 𝑚 + 1, … , 𝑚 + 𝑛 𝑎𝑛𝑑 𝑏𝑚𝑗

≥ 0 ; 𝑗 = 1,2,3, … , 𝑛, 𝑛 + 1, … , 𝑛 + 𝑚 

Similarly, the mid-value transportation problem of the problem P1 can be defined as, 

 (W)                                 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑚𝑎𝑥
𝑖,𝑗

{𝑡𝑤𝑖𝑗
: 𝑤𝑖𝑗 > 0} 

         Subject to, 

∑ 𝑤𝑖𝑗

𝑚+𝑛

𝑗=1

= 𝑎𝑤𝑖
, 𝑖 = 1,2, , … , 𝑚, 𝑚 + 1, … , 𝑚 + 𝑛 (9) 
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∑ 𝑤𝑖𝑗

𝑚+𝑛

𝑖=1

= 𝑏𝑤𝑗
, 𝑗 = 1,2, … 𝑛, 𝑛 + 1, … , 𝑚 + 𝑛 (10) 

𝑎𝑤𝑖
 ≥ 0 ; 𝑖 = 1,2. . . 𝑚, 𝑚 + 1, … , 𝑚 + 𝑛 𝑎𝑛𝑑  𝑏𝑤𝑗

≥ 0 ; 𝑗 = 1,2,3, … , 𝑛, 𝑛 + 1, … , 𝑛 + 𝑚 

Theorem : If the set {𝑚𝑖𝑗
′ : 𝑚𝑖𝑗

′ ≥ 0, for all 𝑖 and 𝑗} be the feasible solution of the mid-value transportation problem 

(M) of P1 and the set {𝑤𝑖𝑗
′ : 𝑤𝑖𝑗

′ ≥ 0, for all 𝑖 and 𝑗} be any feasible solution of the half-width transportation problem 

(W) of P1. Then, the set of intervals  { [𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ , +𝑤𝑖𝑗

′ ]: for all 𝑖 and 𝑗} is the feasible solution of the problem P1, 

provided problem W has same basic cells as the problem M has. 

Proof: Since {𝑚𝑖𝑗
′ : 𝑚𝑖𝑗

′ ≥ 0, for all 𝑖 and 𝑗} and {𝑤𝑖𝑗
′ : 𝑤𝑖𝑗

′ ≥ 0, for all 𝑖 and 𝑗} are feasible solution of the problems M 

and W respectively then  

∑ 𝑚𝑖𝑗
′

𝑚+𝑛

𝑗=1

= 𝑎𝑚𝑖
, 𝑖 = 1,2,3, … , 𝑚, 𝑚 + 1, … , 𝑚 + 𝑛 

∑ 𝑚𝑖𝑗
′

𝑚+𝑛

𝑖=1

= 𝑏𝑚𝑗
, 𝑗 = 1,2,3, … , 𝑛, 𝑛 + 1, … , 𝑛 + 𝑚  

∑ 𝑤𝑖𝑗
′

𝑚+𝑛

𝑗=1

= 𝑎𝑤𝑖
, 𝑖 = 1,2,3, … , 𝑚, 𝑚 + 1, … , 𝑚 + 𝑛 

∑ 𝑤𝑖𝑗
′

𝑚+𝑛

𝑖=1

= 𝑏𝑤𝑗
, 𝑗 = 1,2,3 … 𝑛, 𝑛 + 1, … , 𝑚 + 𝑛 

Using the Result: if 𝑚(𝐴) = 𝑚1 𝑎𝑛𝑑 𝑤(𝐴) = 𝑤1 𝑡ℎ𝑒𝑛 𝐴 = [𝑚1 − 𝑤1 , 𝑚1 + 𝑤1 ] , we can say  

∑ [𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ , +𝑤𝑖𝑗

′ ]

𝑚+𝑛

𝑗=1,𝑗≠𝑖

= [𝑎𝐿𝑖
+ 𝑚𝐿 , 𝑎𝑅𝑖

+ 𝑚𝑅], 𝑖 = 1,2,3, … , 𝑚 

∑ [𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ , +𝑤𝑖𝑗

′ ]

𝑚+𝑛

𝑗=1

=  [𝑚𝐿 , 𝑚𝑅] , 𝑖 = 𝑚 + 1, 𝑚 + 2, … 𝑚 + 𝑛 

∑ [𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ , +𝑤𝑖𝑗

′ ]

𝑚+𝑛

𝑖=1

=  [𝑚𝐿 , 𝑚𝑅] , j = 1,2, … 𝑚 

∑ [𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ , +𝑤𝑖𝑗

′ ]

𝑚+𝑛

𝑖=1

= [𝑏𝐿𝑗
+ 𝑚𝐿 , 𝑏𝑅𝑗

+ 𝑚𝑅] , 𝑗 = 𝑚 + 1, 𝑚 + 2, … 𝑚 + 𝑛 

Hence, [𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ , +𝑤𝑖𝑗

′ ] is the feasible solution of P1. 

 

5. Algorithm : 

A new algorithm for finding the solution of interval integer transshipment problem (P) has been introduced.   

The proposed algorithm proceeds as follows. 

Step 1. Construct the time minimizing interval transshipment table. 

Step 2. Add buffer stock range to each transshipment point and convert the interval transshipment table into interval 

transportation problem (P1) table. 

Step 3. Split the problem into two independent transportation problems called, mid-value transportation problem (M) 

and half-width transportation problem (W) from the given problem P. 

Step 4. Solve the problem M using shootout method [12]. Let {𝑚𝑖𝑗
′ : 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗} be optimal solution of M. 

Step 5. Solve the problem W such that the basic cells of the problem W must be same as that of the problem M. Let 

{𝑤𝑖𝑗
′ : 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗 } be solution of W. 

Step 6. The feasible solution of the given problem (P1) is,[𝑚𝑖𝑗
′ − 𝑤𝑖𝑗

′ , 𝑚𝑖𝑗
′ + 𝑤𝑖𝑗

′ ]. 

Step 7. The feasible solution of the given problem (P) is obtain by applying the following change in the feasible 

solution of (P1) ,If [𝑥𝑖𝑗, 𝑦𝑖𝑗] = 𝛼 and [𝑥𝑗𝑖, 𝑦𝑗𝑖] = 𝛽 ; 𝛼 ≤ 𝛽 then [𝑥𝑗𝑖, 𝑦𝑗𝑖] =  𝛽 − 𝛼 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝛽 − 𝛼 ≥ 0, and for  𝛽 ≤

𝛼, [𝑥𝑖𝑗 , 𝑦𝑖𝑗] = 𝛼 −  𝛽 provide 𝛼 −  𝛽 ≥ 0. Note that if  [𝑥𝑖𝑖 , 𝑦𝑖𝑖] = 𝛼, this will give non-basic cell for transshipment 

problem, i.e. [𝑥𝑖𝑖 , 𝑦𝑖𝑖] = 0. 
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Find the corresponding time span with respect to this revised feasible solution. 

 

6. Numerical Illustration : 

An example to illustrated the step-wise working procedure of the proposed algorithm is as follows. 

Example: The minimum supplies of a product from sources O1, O2 and O3 are 20, 30 and 50 and the maximum supplies 

are 40, 50 and 60, respectively. The minimum demands for destination D1, D2, and D3 are 30, 20, and 50 and the 

maximum demands are 60, 30 and 60, respectively. The shipping time ranges from each supply point to each demand 

point is given in Table 2. The objective of this problem is to create a strategy for moving the product from the supplier 

to the destination, while satisfying the supply and demand constraints in least possible time frame. 

Table-2: Time from supply to destinations 

 O1 O2 O3 D3+1 D3+2 D3+3 

O1 - [1,3] [3,5] [12,18] [16,20] [10,16] 

O2 [1,3] - [1,4] [18,24] [10,14] [12,16] 

O3 [3,5] [1,4] - [14,20] [20,26] [18,26] 

D3+1 [12,18] [18,24] [14,20] - [2,4] [1,2] 

D3+2 [16,20] [10,14] [20,26] [2,4] - [2,6] 

D3+3 [10,16] [12,16] [18,26] [1,2] [2,6] - 

 

Solution:  

Step1:  The TMTsP-IC is given in table-3. 

Table-3: TMTsP-IC 

 O1 O2 O3 D3+1 D3+2 D3+3 Supply 

O1 - [1,3] [3,5] [12,18] [16,20] [10,16] [20,40] 

O2 [1,3] - [1,4] [18,24] [10,14] [12,16] [30,50] 

O3 [3,5] [1,4] - [14,20] [20,26] [18,26] [50,60] 

D3+1 [12,18] [18,24] [14,20] - [2,4] [1,2] - 

D3+2 [16,20] [10,14] [20,26] [2,4] - [2,6] - 

D3+3 [10,16] [12,16] [18,26] [1,2] [2,6] - - 

Demand - - - [30,60] [20,30] [50,60] [100,150] 

 

 Step 2: Buffer stock range  𝑀 = ∑ [𝑎𝐿𝑖
, 𝑎𝑅𝑖

]3
𝑖=1 = ∑ [𝑏𝐿𝑗

, 𝑏𝑅𝑗
]3

𝑗=1 = [100,150] . The transshipment table-3 is converted 

into corresponding transportation table-4 by adding buffer stock range M= [100,150] to each transshipment point. 

Table-4: TMTP-IC 

 O1 O2 O3 D3+1 D3+2 D3+3 supply 

O1 - [1,3] [3,5] [12,18] [16,20] [10,16] [120,190] 

O2 [1,3] - [1,4] [18,24] [10,14] [12,16] [130,200] 

O3 [3,5] [1,4] - [14,20] [20,26] [18,26] [150,210] 

D3+1 [12,18] [18,24] [14,20] - [2,4] [1,2] [100,150] 

D3+2 [16,20] [10,14] [20,26] [2,4] - [2,6] [100,150] 

D3+3 [10,16] [12,16] [18,26] [1,2] [2,6] - [100,150] 

Demand [100,150] [100,150] [100,150] [130,210] [120,180] [150,210] [700,1050] 

 

Step3: The table-4 is divided into two different crisp transportation tables: mid-value transportation table-5 and half-

width transportation table-6. 

Table-5: mid value transportation table 

 O1 O2 O3 D3+1 D3+2 D3+3 supply 

O1 - 2 4 15 18 13 155 
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O2 2 - 2.5 21 12 14 165 

O3 4 2.5 - 17 23 22 180 

D3+1 15 21 17 - 3 1.5 125 

D3+2 18 12 23 3 - 4 125 

D3+3 13 14 22 1.5 4 - 125 

demand 125 125 125 170 150 180 875 

 

Table-6: half width transportation table 

 O1 O2 O3 D3+1 D3+2 D3+3 supply 

O1 - 1 1 3 2 3 35 

O2 1 - 1.5 3 2 2 35 

O3 1 1.5 - 3 3 4 30 

D3+1 3 3 3 - 1 0.5 25 

D3+2 2 2 3 1 - 2 25 

D3+3 3 2 4 0.5 2 - 25 

demand 25 25 25 40 30 30 175 

 

Step4: The optimal solution of the mid value transportation problem (table-5) is obtained by using shootout method and 

given in table -7. It can be obtained by other existing method for crisp TMTP. 

 

Table-7: Optimal solution of mid value transportation problem 

 O1 O2 O3 D3+1 D3+2 D3+3 supply 

O1 -[70] 2[85] 4 15 18 13 155 

O2 2 -[15] 2.5 21 12[150] 14 165 

O3 4[55] 2.5 -[125] 17 23 22 180 

D3+1 15 21 17 - [125] 3 1.5 125 

D3+2 18 12[25] 23 3 - 4[100] 125 

D3+3 13 14 22 1.5[45] 4 - [80] 125 

demand 125 125 125 170 150 180 875 

 

The solution of crisp mid-value TP is 𝑚11
′ = 70, 𝑚12

′ = 85, 𝑚22
′ = 15, 𝑚25

′ = 150, 𝑚31
′ = 55, 𝑚33

′ = 125, 𝑚44
′ =

125, 𝑚52
′ = 25, 𝑚56

′ = 100, 𝑚62
′ = 25, 𝑚66

′ = 80. 

Step 5. Half width-value transportation problem is solved in table-8 by giving assignment in feasible cells of table-7. 

 

Table-8: half mid width transshipment table 

 O1 O2 O3 D3+1 D3+2 D3+3 supply 

O1 [20] 1[15] 1 3 2 3 35 

O2 1 [5] 1.5 3 2[30] 2 35 

O3 1[5] 1.5 [25] 3 3 4 30 

D3+1 3 3 3 [25] 1 0.5 25 

D3+2 2 2[5] 3 1 - 2[20] 25 

D3+3 3 2 4 0.5[15] 2 [10] 25 

demand 25 25 25 40 30 30 175 

 

Solution of crisp half-width TP is  𝑤11
′ = 20, 𝑤12

′ = 15, 𝑤22
′ = 5, 𝑤25

′ = 30, 𝑤31
′ = 5, 𝑤33

′ = 25, 𝑤44
′ = 25, 𝑤52

′ =
5, 𝑤56

′ = 20, 𝑤62
′ = 15, 𝑤66

′ = 10. 

Step 6. The feasible solution of the transformed transportation problem is presented in table-9 and is obtained by 

combining the both solutions presented in table-7 and table-8. 

 

Table-9: solution of transformed transportation table 

 O1 O2 O3 D3+1 D3+2 D3+3 supply 

O1 [50,90] [70,100]     [120,190] 

O2  [10,20]   [120,180]  [130,200] 
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O3 [50,60]  [100,150]    [150,210] 

D3+1    [100,150]   [100,150] 

D3+2  [20,30]    [80,120] [100,150] 

D3+3    [30,60]  [70,90] [100,150] 

demand [100,150] [100,150] [100,150] [130,210] [120,180] [150,210] [700,1050] 

 

[𝑥11, 𝑦11] = [50,90], [𝑥12, 𝑦12] = [70,100], [𝑥22, 𝑦22] =  [10,20], [𝑥25, 𝑦25] = [120,180], [𝑥31, 𝑦31] =
[50,60], [𝑥33, 𝑦33] = [100,150], [𝑥44, 𝑦44] = [100,150], [𝑥52, 𝑦52] = [20,30], [𝑥56, 𝑦56] = [80,120], [𝑥64, 𝑦64] =
[30,60], [𝑥66, 𝑦66] = [70,90],  
Step7: The feasible solution of the original transshipment problem is as follow, 

[𝑥12, 𝑦12] = [70,100], [𝑥25, 𝑦25] = [120,180], [𝑥31, 𝑦31] = [50,60], [𝑥52, 𝑦52] = [20,30], [𝑥56, 𝑦56] =
[80,120], [𝑥64, 𝑦64] = [30,60],  
corresponding time span is  𝑚𝑎𝑥

𝑖,𝑗
{[𝑡𝑖𝑗, 𝑠𝑖𝑗]: [𝑥𝑖𝑗 , 𝑦𝑖𝑗] > 0} = 𝑚𝑎𝑥

𝑖,𝑗
{[1,3], [10,14], [3,5], [10,14], [2,6], [1,2]} 

Whenever ordering the interval in lexicographic order, the time span is [10,14]. Likewise, when ordering by length, the 

time span is [10,14]. Additionally, when ordering intervals by the midpoint of the interval, the taken time span is [10,14]. 

 

7. CONCLUSION : 

The present paper proposes a solution procedure of the time minimizing transshipment problem with interval constraints. 

A method called the mid-width method is established to find the basic feasible solution for a fully integer interval 

transshipment problem. For easy understanding and implementation, the method is summarized in an algorithm. This 

algorithm finds the feasible solution of the given problem in a finite number of steps. A numerical example illustrated 

the working procedure of our proposed algorithm and provided a feasible solution. The proposed method can be applied 

as a tool by decision makers to deal with real-life logistic problems involving interval parameters. 
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